

INCIDENCE GEOMETRY
Incidence Axiom 1:
For every pair of distinct points P and Q there exists exactly one line l st both P and Q lie on l.
Incidence Axiom 2
For every line l there exists at least two distich points Band Q st both P and Q lie on l.
Incidence Axiom 3:
There exists three points that does not lie on any one line
Them 2.6.3: If l is any line, then there exsists at least one point P st P does not lie on l.

This 2.6.4: If P is any point, then there are at least two distigt lines l and m st. Plies on both m and l.

Them 2.6.5: If l is any line then there exists lines m and n st. l, m, n are distingt lines and both m and n intersects l.
Thru 2.6.6. If P is any point, then there exists at least one line ℓ st P does not lie on 1 .

Thrm 2.6.7: There exists three distich lines st no point lie on all three lines.
Them 26.8: If Pis any point, then there exists points Q and R ss. P, R and Q are noncollinear

Thrm 2.6.9: If P and Q are two points st $P \neq Q$, then there exists a point R sit $P_{1} Q$ and R are collinear.

DISTANCE AND RULER POSTULATE
Them 3.27: If P and Q are any two points, then

1) $P Q=Q P$
2) $P Q \geq 0$
3) $P Q=0$ if, and only if $P=Q$.

Them 3.2.16 (The Ruler Replacement Post): For every pair of distinct points P and Q, there is a coordinate function $f: \overrightarrow{P Q} \rightarrow \mathbb{R}$ st $f(P)=0$ and $f(Q)>0$
Thru 3.2.17 (Betweeness for Points): Let l be a line; let A, B, C be three distinct points that all lie on $l:$ and let $f: l \rightarrow \mathbb{R}$ be a coordinate function for l. The point C is between A and B if and only if either $1(A)<f(C)<f(B)$ or $f(A)>f(C) \geqslant f(B)$
Thar. 3.2.22 (Exictance and Uniqueness of Midpoints): If A and B are distinct points, then there exists a unique point M st M is the midpoint of $\overline{A B}$

Them 3.2.23 (Point Construction Post): If 1 and Bare distid points and d is any non-negative real number, then there exists a unique point C st C lies on $A B$ and $A C=d$.

PLANE SEPERATION
Thrm 3.3.4: hel ℓ be a line and let A and B be points that do not lie on l. The points A and B are on the same side of l if and only if $\overline{A B} \cap l=\varnothing$. The points A and B are on opposite sides of l if and only if $\overline{A B} \cap \ell=\varnothing$.

Them 3.3 .9 (The Ray Them): Let l be a line, A a point on l and B an external point for l. If C is a point on $\overrightarrow{A B}$ and $C \neq A$, Then B and C are on the same side of l.

Them. 3.3.10: Let A, B and C be three non collinear points and let D be a point on the line $\overrightarrow{B C}$. The point D is between points B and C if and only if the ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$

Thru 3.3.12 (Pasch's Axiom) Let $\triangle A B C$ be a triangle and let l be a line st none of A, B and C lies on l. If l intersects $\overline{A B}$, then l also intersect $\overline{A C}$ or $\overline{B C}$
ANGLE MEASURE AND PROTACTOR POST
Lemma 3.4.4: IC A, B, C and D are four distict points st C and D are on the same side of $\overrightarrow{A B}$ and D is not on $\overrightarrow{A C}$, then either C is in the interior of $A B A D$ or D is in the interior of $\angle B A C$.

Them 3.4.5 (Betweennes Them for Rays): Let $A_{1} B_{1}, C$ and D be for district points $s t$. Cand D lie on the same side of $\widehat{A B}$. Then $\mu(x, B A D)<\mu(\alpha B A C)$ if and only if $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$

Them 3.4.7 (Existance and Uniqueness of Angle Bisectors): If A, B and C are three non collinear points, then there exists a unique angle bisector for $\angle B A C$.

CROSSBAR THRM AND LINEAR PAIR THEM
Thrm 3.5.1 (The 2 -them): Led ℓ be a line and let A and D be district points on l. If B and E are points on opposite sides of l, then $\overrightarrow{A B} \cap \overrightarrow{D E}=\varnothing$.

Them 3.5.2 (The (rossbar Them): If $\triangle A B C$ is a triangle and D is a point in the interior of $\triangle B A C$, then there is a point G st. G lies on both $\overrightarrow{A D}$ and $\overrightarrow{B C}$.

Them 3.5.3: A point D is in the interior of the angle $X B A C$ if and only if the ray $\overrightarrow{A D}$ intersects the interior of the segment $\overline{B C}$

Them 3.5.5 (Linear Pair Thrm): If angles \&BAD and $\triangle D A C$ form a linear pair then $\mu(\angle B A D)+\mu(\not \& D A C)=180^{\circ}$.

Lemma 3.5.7: If $C * A * B$ and D is in the interior of $\angle B A E$, then E is in the interior of $\triangle_{D} D A C$.

Than 3.5.9: If ℓ is a line and P is a point on l, then there exists exactly one line m st P lies on m and $m \perp l$.

Thrm 3.5.11 Existence and Uniqueness of Perpendicular Bisectors) If Dand Eare two district points, then there exists a unique perpendicular bisector for $\overline{D E}$

Therm 3.5.13 (Vertical Angles Thrm):Verticle angles are congurent.
Lemma 3.5. 14 : Let $[a, b]$ and $[c, d]$ be closed intervals of real numbers and let $f:[a, b] \rightarrow[c, d]$ be a function. If f is strictly increasing and onto, then f is continous.

Thrum 3.5. 15 (The Continuity Axiom): The function f is described as $f:[0, d] \rightarrow$ $[0, \mu(x C A B)]$ by $f(x)=\mu\left(\forall\left(A D_{x}\right)\right.$

SIDE-ANGLE-SIDE POSTULATE
Them 3.6.5 (Isosceles Triangle Them): The base angles of an isosceles triangle are congruent.
\rightarrow If $\triangle A B C$ is a triangle and $\overline{A B} \cong \overline{A C}$, then $\not \angle A B C \cong \triangle A C B$

