Formulas Collection MA2401 - Geometry

O. Olsen^a

^aInstitutt for fysikk, NTNU, Trondheim, Norge.

T = Theorem, C = Corollary, L = Lemma, A = Axiom, definitions are omitted.

Axiomatic Systems and Geometry Incidence

IA 1: For every pair of distinct points P and Q there exists exactly one line l such that both P and Q lie on l.

IA 2: For every line l there exists at least two distinct points P and Q such that both P and Q lie on l.

IA 3: There exists three points that do not all lie on any one line.

Euclidian Parallel Postulate: For every line l and for every point P that does not lie on l, there is exactly one line m such that P lies on m and $m \parallel l$.

Elliptic Parallel Postulate: For every line l and for every point P that does not lie on l, there is no line m such that P lies on $m \parallel l$.

Hyperbolic Parallel Postulate: For every line l and for every point P that does not lie on l, there are at least two lines m and n such that P lies on both m and n, and both m and n are both parallel to l.

T 2.6.3: If l is any line, there exists at least one point P such that P does not lie on l.

T 2.6.4: If P is any point, then there are at least two distinct lines l and m such that P lies on both l and m.

T 2.6.5: If l is any line, then there exists lines m and n such that l,m and n are distinct and both m and n intersect l.

T 2.6.6: If P is any point, then there exists at least one line l such that P does not lie on l.

T 2.6.7: There exist three distinct lines such that no point lies on all three of the lines.

T 2.6.8: If P is any point, then there exist points Q and R such that P,Q and R are noncollinear.

T 2.6.9: If *P* and *Q* are two points such that $P \neq Q$, then there exists a point *R* such that *P*,*Q* and *R* are noncollinear.

Axioms for Plane Geometry

A 3.1.1 (Existence Postulate): The collection of all points forms a nonempty set. There is more than one point in that set.

A 3.1.3 (Incidence Postulate): Every line is a set of points. For every pair of distinct points A and B there is exactly one line l such that $A \in l$ and $B \in l$.

T 3.1.7: If l and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both l and m.

A 3.2.1 (Ruler Postulate): For every pair of points P and Q there exists a real number PQ, called the distance from P to Q. For each line l there is a one-to-one correspondence from l to \mathbb{R} such that if P and Q are points on that line that corresponds to the real numbers x and y, then PQ = |x - y|.

T 3.2.7: If P and Q are any two points, then:

1. PQ = QP,

 $\mathbf{2.}\ PQ \geq 0, \ \mathrm{and} \ \\$

3. PQ = 0 if and only if P = Q

C 3.2.8: A * C * B if and only B * C * A.

3.2.16 (Ruler Placement Postulate): For every pair of distinct points P and Q, there is a coordinate function $f: \overrightarrow{PQ} \to \mathbb{R}$ such that f(P) = 0 and f(Q) > 0.

T 3.2.17 (Betweenness for Points): Let l be a line; A, B, and C be three distinct points that all lie on l; and $f: l \to \mathbb{R}$ be a coordinate function for l. The point C is between A and B if and only if either f(A) < f(C) < f(B)or f(A) > f(C) > f(B). **C 3.2.18**: Let A, B, and C be three points such that B lies on \overrightarrow{AB} . Then A * B * C if and only if AB < AC.

C 3.2.19: If A, B, and C are three distinct collinear points, then exactly one of them lies between the other two.

C 3.2.20: Let *A* and *B* be two distinct points. If *f* is a coordinate function for $l = \overrightarrow{AB}$ such that f(A) = 0 and f(B) > 0, then $\overrightarrow{AB} = \{P \in l \mid f(P) \ge 0\}$.

T 3.2.22 (Existence, Uniqueness for Midpoints): If A and B are distinct points, then there exists a unique point M such that M is the midpoint of \overline{AB} .

T 3.2.23 (Point Construction): If A and B are distinct points and d is any nonnegative real number, then there exists a unique points C such that C lies on \overrightarrow{AB} and AC = d.

A 3.3.2 (Plane Separation): For every line l, the points that do not lie on l form two disjoint, nonempty sets H_1 and H_2 , called half-planes bounded by l, such that the following conditions are satisfied:

1. Each of H_1 and H_2 is convex.

2. If $P \in H_1$ and $Q \in H_2$, then \overline{PQ} intersects l.

T 3.3.9 (Ray Theorem): Let l be a line, A a point on l, and B an external point for l. If C is a point on \overrightarrow{AB} and $C \neq A$, then B and C are on the same side of l.

T 3.3.10: Let A, B, and C be three noncollinear points and let D be a point on the line \overrightarrow{BC} . The point D is between en points B and C if and only if the ray \overrightarrow{AD} is between rays \overrightarrow{AB} and \overrightarrow{AC} .

T 3.3.12 (Pasch's Axiom): Let $\triangle ABC$ be a triangle and let *l* be a line such that none of *A*, *B*, and *C* lies on *l*. If *l* intersects \overline{AB} , then *l* also intersects either \overline{AC} or \overline{BC} .

A 3.4.1 (Protractor Postulate): For every angle $\angle BAC$ there is a real number $\mu(\angle BAC)$, called the measure of $\angle BAC$, such that the following conditions are satisfied: 1. $0^{\circ} \leq \mu(\angle BAC) < 180^{\circ}$ for every angle $\angle BAC$ 2. $\mu(\angle BAC) = 0^{\circ}$ if and only if $\overrightarrow{AB} = \overrightarrow{AC}$ 3. For each real number r, 0 < r < 180, and for each halfplane H bounded by \overleftarrow{AB} there exists a unique ray \overrightarrow{AE} such that E is in H and $\mu(\angle BAE) = r^{\circ}$ 4. If the ray \overrightarrow{AD} is between rays \overrightarrow{AB} and \overrightarrow{AC} , then $\mu(\angle BAD) + \mu(\angle DAC) = \mu(\angle BAC)$.

L 3.4.4: If A, B, C, and D are four distinct points such that C and D are on the same side of \overrightarrow{AB} and D is not on \overrightarrow{AC} , then either C is in the interior of $\angle BAD$ or D is in the interior of $\angle BAC$.

T 3.4.5 (Betweenness Rays): Let A, B, C, and D be four distinct points such that C and D lie on the same side of \overrightarrow{AB} . Then $\mu(\angle BAD) < \mu(\angle BAC)$ if and only if \overrightarrow{AD} is between rays \overrightarrow{AB} and \overrightarrow{AC} .

T 3.4.7 (Existence and Uniqueness for Angle Bisec-tors): If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle BAC$.

T 3.5.1 (**Z-Theorem**): Let *l* be a line and let *A* and *D* be distinct points on *l*. If *B* and *E* are points on opposite sides of *l*, then $\overrightarrow{AB} \cap \overrightarrow{DE} = \emptyset$.

T 3.5.2 (Crossbar): If $\triangle ABC$ is a triangle and D is a point in the interior of $\angle BAC$, then there is a point G such that G lies on both \overrightarrow{AD} and \overrightarrow{BC} .

T 3.5.3: A point D is in the interior of the angle $\angle BAC$ if and only if the ray \overrightarrow{AD} intersects the interior of the segment \overrightarrow{BC} .

T 3.5.5 (Linear Pair): If angles $\angle BAD$ and $\angle DAC$ form a linear pair, then $\mu(\angle BAD) + \mu(\angle DAC) = 180^{\circ}$.

L 3.5.7: If C * A * B and D is in the interior of $\angle BAE$, then E is in the interior of $\angle DAC$.

T 3.5.9: If l is a line and P is a point on l, then there exists exactly one line m such that P lies on m and $m \perp l$.

T 3.5.11 (Existence, Uniqueness Perpendicular Bisectors): If D and E are two distinct points, then there exists a unique perpendicular bisector of \overline{DE} .

T 3.5.13 (Vertical Angles): Vertical angles are congruent.

L 3.5.14: Let [a, b] and [c, d] be closed intervals of real numbers and let $f : [a, b] \to [c, d]$ be a function. If f is strictly increasing and onto, then f is continuous.

A 3.6.3 (SAS): If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\overline{AB} \cong \overline{DE}$, $\angle ABC \cong \angle DEF$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

T 3.6.5 (Isosceles): The base angles of an isosceles triangle are congruent.

Neutral Geometry

T 4.1.2 (YVT): The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

T 4.1.3 (Existence, Uniqueness Perpendiculars): For every line l and for every point P, there exists a unique line m such that P lies on m and $m \perp l$.

T 4.2.1 (ASA): If two angles and the included side of one triangle are congruent to the corresponding parts of a second triangle, then the two triangles are congruent.

T 4.2.2 (Converse Isosceles): If $\triangle ABC$ is a triangle such that $\angle ABC \cong \angle ACB$, then $\overline{AB} \cong \overline{AC}$.

T 4.2.3 (AAS): If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\angle ABC \cong \angle DEF$, $\angle BCA \cong \angle EFD$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

T 4.2.5 (Hypotenuse-Leg): If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

T 4.2.6: If $\triangle ABC$ is a triangle, \overline{DE} is a segment such that $\overline{DE} \cong \overline{AB}$, and H is a hal-plane bounded by \overrightarrow{DE} , then there is a unique point $F \in H$ such that $\triangle DEF \cong \triangle ABC$.

T 4.2.7 (SSS): If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\overline{CA} \cong \overline{FD}$, then $\triangle ABC \cong \triangle DEF$.

T 4.3.1 (Scalene): Let $\triangle ABC$ be a triangle. Then AB > BC if and only if $\mu(\angle ACB) > \mu(\angle BAC)$.

T 4.3.2 (Triangle Inequality): If A, B, and C are three noncollinear points, then AC < AB + AC.

T 4.3.3 (Hinge): If $\triangle ABC$ and $\triangle DEF$ are two triangles such that AB = DE, AC = DF, and $\mu(\angle BAC) < \mu(\angle EDF)$, then BC < EF.

T 4.3.4: Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l. If R is any point on l that is different from F, then PR > PF.

T 4.3.6 (Pointwise Characterization Angle Bisector): Let A, B, and C be three noncollinear points and let P be a point in the interior og $\angle BAC$. Then P lies on the angle bisector of $\angle BAC$ if and only if $d(P, \overrightarrow{AB}) = d(P, \overrightarrow{AC})$.

T 4.3.7 (Pointwise Characterization Perpendicular Bisector): Let *A* and *B* be distinct points. A point *P* lies on the perpendicular bisector of \overline{AB} if and only if PA = PB.

T 4.4.2 (AIVT): If l and l' are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then $l \perp l'$.

C 4.4.4 (Corresponding Angles): If l and l' are lines cut by a transversal t in such a way that two corresponding angles are congruent, then l is parallel to l'.

C 4.4.5: If l and l' are lines cut by a transversal t in such a way that two nonalternating interior angles on the same side of t are supplements, then l is parallel to l'.

C 4.4.6 (Existence Parallels): If l is a line and P is an external point, then there is a line m such that P lies on m and m is parallel to l.

C 4.4.7: The Elliptic Parallel Postulate is false in any model for neutral geometry.

C 4.4.8: If l, m, and n are three lines such that $m \perp l$ and $n \perp l$, then either m = n or $m \parallel n$.

T 4.5.2 (Saccheri-Legendre): If $\triangle ABC$ is any triangle, then $\sigma(\triangle ABC) \leq 180^{\circ}$.

L 4.5.3: If $\triangle ABC$ is any triangle, $\mu(\angle CAB) + \mu(\angle ABC) < 180^{\circ}$.

L 4.5.4: If $\triangle ABC$ is a triangle and E is a point in the interior og \overline{BC} , then $\sigma(\triangle ABE) + \sigma(\triangle ECA) = \sigma(\triangle ABC) + 180^{\circ}$.

L 4.5.5: If *A*, *B*, and *C* are three noncollinear points, then there exists a point *D* that does not lie on \overrightarrow{AB} such that $\sigma(\triangle ABD) = \sigma(\triangle ABC)$ and the angle measure of one of the interior angles in $\triangle ABD$ is less than or equal to $\frac{1}{2} \mu(\angle CAB)$

C 4.5.6: The sum of the measures of two interior angles of a triangle is less than or equal to the measure of their remote exterior angle.

C 4.5.7 (Converse Euclid's fifth): Let l and l' be two lines cut by a transversal t. If l and l' meet on one side of t, then the sum of the measures of the two interior angles on that side of t is strictly less than 180° .

T 4.6.4: If $\Box ABCD$ is a convex quadrilateral, then $\sigma(\Box ABCD) \leq 360^{\circ}$.

T 4.6.6: Every parallelogram is a convex quadrilateral.

T 4.6.7: If $\triangle ABC$ is a triangle, *D* is between *A* and *B*, and *E* is between *A* and *C*, then $\Box BCED$ is a convex quadrilateral.

T 4.6.8: The quadrilateral $\Box ABCD$ is convex if and only if the diagonals \overline{AC} and \overline{BD} have an interior point in common.

C 4.6.9: If $\Box ABCD$ and $\Box ACBD$ are both quadrilaterals, then $\Box ABCD$ is not convex. If $\Box ACBD$ is a quadrilateral.

T 4.7.3+ Each of the following statements is equivalent to the Euclidian Parallel Postulate: 1. Proclus's Axiom: If l and l' are parallel lines and $t \neq l$ is a line such that t intersects l, then t' also intersects l'.

2. If l and l' are parallel lines and t is a transversal such that $t \perp l$, then $t \perp l'$

3. If l, m, n, and k are lines such that $k \parallel l, m \perp k$, and $n \perp l$, then either m = n or $m \parallel n$.

4. Transistivity of Parallelism: If l is parallel to m and m is parallel to n, then either l = n or $l \parallel n$.

5. Converse AIVT: If two parallel lines are cut by a transversal, then both pairs of alternate interior angles are congruent.

6. Euclid's Postulate V: If l and l' are two lines but by a transversal t in such a way that the sum of the measures of the two interior angles on one side of t is less than 180°, then l and l' intersects on that side of t.

7. Hilbert's PP: For every line l and for every external point P there exists at most one line m such that P lies on m and $m \parallel l$.

8. Angle Sum: If $\triangle ABC$ is a triangle, then $\sigma(\triangle ABC) = 180^{\circ}$.

9. Wallis's Postulate: If $\triangle ABC$ is a triangle and \overline{DE} is a segment, then there exists a point F such that $\triangle ABC \sim \triangle DEF$.

10. Clairaut's Axiom: There exists a rectangle.

L 4.7.5 Suppose \overline{PQ} is a segment and Q' is a point such that $\angle PQQ'$ is a right angle. For every $\epsilon > 0$ there exists a point T on $\overrightarrow{QQ'}$ such that $\mu(\angle PTQ) < \epsilon^{\circ}$.

T 4.8.2 (Additivity Defect):

1. If $\triangle ABC$ is a triangle and E is a point in the interior of \overline{BC} , then:

 $\delta(\triangle ABC) = \delta(\triangle ABE) + \delta(\triangle ECA).$ **2.** If $\Box ABCD$ is a convex quadrilateral, then $\delta(\Box ABCD) = \delta(\triangle ABC) + \delta(\triangle ACD).$

T 4.8.4: The following statements are equivalent:

- **1.** There exists a triangle whose defect is 0° .
- **2.** There exists a right triangle whose defect is 0° .
- **3.** There exists a rectangle.
- 4. There exist arbitrarily LARGE rectangles.
- **5.** The defect of every right triangle is 00° .
- **6.** The defect of every triangle is 0° .

C 4.8.5: In any model for neutral geometri, there exists one triangle qhose defect is o° if and only if every triangle has defect o° .

L 4.8.6: If $\triangle ABC$ is any triangle, then at least two of the interior angles in $\triangle ABC$ are acute. If the interior angles

at vertices A and B are acute, then the foot of the perpendicular from C to \overrightarrow{AB} is between A and B.

T 4.8.10 (Saccheri quadrilaterals): If $\Box ABCD$ is a Saccheri quadrilateral with base \overline{AB} , then:

- **1.** The diagonals \overline{AC} and \overline{BD} are congruent.
- **2.** The summit angles $\angle BCD$ and $\angle ADC$ are congruent.
- **3.** The segment joining the midpoint of \overline{AB} to the mid-
- point of \overline{CD} is perpendicular to both \overline{AB} and \overline{CD} .
- **4.** $\Box ABCD$ is a parallelogram.
- **5.** $\Box ABCD$ is a convex quadrilateral.

6. The summit angles $\angle BCD$ and $\angle ADC$ are either right or acute.

T 4.8.11 (Lambert quadrilaterals): If $\Box ABCD$ is a Lambert quadrilateral with right angles at vertices A, B, and C, then:

1. $\Box ABCD$ is a parallelogram.

2. $\Box ABCD$ is a convex quadrilateral.

3. $\angle ADC$ is either right or acute.

4. $BC \leq AD$.

T 4.8.12 (Aristotle): If A, B, and C are three noncollinear points such that $\angle BAC$ is an aute angle and P and Q are two points on \overrightarrow{AB} with A * P * Q, then $d(P, \overrightarrow{AC}) < d(d, \overrightarrow{AC})$. Furthermore, for every positive number d_0 there exists a point R on \overrightarrow{AB} such that $d(R, \overrightarrow{AC}) > d_0$.

T 4.9.1 (Universal Hyperbolic): If there exists one line l_0 , an external point P_0 , and at least two lines that pass through P_0 and are parallel to l_0 , then for every line l and for every external point P there exist at least two lines that pass through P and are parallel to l.

Euclidian Geometry

T 5.1.1 (Converse AIVT): If two parallel lines are cut by a transversal, then both pairs of alternate interior angles are congruent.

T 5.1.2 (Euclid V): If l and l' are two lines cut by a transversal t such that the sum of the measures of the two interior angles on side of t is less than 180°, then l and l' intersect on that side of t.

T 5.1.3 (Angle Sum): For every triangle $\triangle ABC$, $\sigma(\triangle ABC) = 180^{\circ}$.

T 5.1.4 (Wallis's Postulate): If $\triangle ABC$ is a triangle and \overline{DE} is a segment, then there exists a point F such that $\triangle ABC \sim \triangle DEF$.

T 5.1.5 (Proclus's Theorem): If l and l' are parallel lines and $t \neq l$ is a line such that t intersects l, then t also intersects l'.

T 5.1.6: If l and l' are parallel lines and t is a transversal such that $t \perp l$, then $t \perp l'$.

T 5.1.7: If l, m, n, and k are lines such that $k || l, m \perp k$, and $n \perp l$, then either m = n or m || n.

T 5.1.8 (Transistivity Parallelism): If l||m| and m||n|, then either l = n or l||n|.

T 5.1.9 (Claiaut's Axiom): There exists a rectangle.

T 5.1.10 (Euclidian Rectangles): If $\Box ABCD$ is a parallelogram, then:

1. The diagonals divide the quadrilateral into congruent triangles (i.e., $\triangle ABC \cong \triangle CDA$ and $\triangle ABD \cong \triangle CDB$). 2. The opposite sides are congruent (i.e., $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$).

3. The opposite angles are congruent (i.e., $\angle DAB \cong \angle BCD$ and $\angle ABC \cong \angle CDA$).

4. The diagonals bisect each other (i.e., \overline{AC} and \overline{BD} intersect in a point E that is the midpoint of each.

T 5.2.1 (Parallel Projection): Let l, m, and n be distinct parallel lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t' be a transversal that cuts the lines at points A', B', and C', respectively. Assume that A * B astC. Then $\frac{AB}{AC} = \frac{A'B'}{A'C'}$.

L 5.2.2: Let l, m, and n be distinct parallel lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t' be a transversal that cuts the lines at points A', B', and C', respectively. Assume A * B * C. If $\overline{AB} \cong \overline{BC}$, then $\overline{A'B'} \cong \overline{B'C'}$.

T 5.3.1 (Fundamental Similar Triangles): IF $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\triangle ABC \sim \triangle DEF$, then $\frac{AB}{AC} = \frac{DE}{DF}$.

C 5.3.2: If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\triangle ABC \sim \triangle DEF$, then there is a positive number r sych that $DE = r \cdot AB$, $DF = r \cdot AC$, and $EF = r \cdot BC$.

T 5.3.3 (SAS Similarity Criterion): If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\angle CAB \cong \angle FDE$ and $\frac{AB}{AC} = \frac{DE}{DF}$, then $\triangle ABC \sim \triangle DEF$.

T 5.4.1 (Pythagoras): If $\triangle ABC$ is a right triangle with right angle at vertex C, then $a^2 + b^2 = c^2$.

T 5.4.3: The height of a right triangle is the geometric mean of the lenghts of the projections of the legs.

T 5.4.4: The length of one leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the projection of that leg onto the hypotenuse.

T 5.4.5 (Converse Pythagoras): If $\triangle ABC$ is a triangle such that $a^2 + b^2 = c^2$, then $\angle BCA$ is a right angle.

T 5.5.2 (Pythagorean Identity): For any angle θ , $sin^2\theta + cos^2\theta = 1$.

T 5.5.3 (Law of sines): If $\triangle ABC$ is any triangle, then $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

T 5.5.4 (Law of cosines): If $\triangle ABC$ is any triangle, then $c^2 = a^2 + b^2 - 2ab \cos C$.

T 5.6.2 (Median Concurrence): The three medians of any triangle are concurrent; that is, if $\triangle ABC$ is a triangle and D, E, and F are the midpoints of the sides opposite A, B, and C, respectively, then \overline{AD} , \overline{BE} , and \overline{CF} all intersect in a common point G. Moreover, AG = 2GD, BG = 2GE, and CE = 2GF.

T 5.6.3 (Euler Line): The orthocenter H, the circumcenter O, and the centroid G of any triangle are collinear. Furthermore, G is between H and O (unless the triangle is equilateral, in which case the three points coincide) and HG = 2GO.

T 5.6.4 (Ceva's): Let $\triangle ABC$ be a triangle. The proper Cevian lines \overrightarrow{AL} , \overrightarrow{BM} , and \overrightarrow{CN} are concurrent (or mutually parallel) if and only if: $\frac{AN}{NB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MA} = 1.$

T 5.6.5 (Menelaus): Let $\triangle ABC$ be a triangle. Three proper Menelaus points L, M, and N on the lines \overrightarrow{BC} , \overrightarrow{AC} , and \overrightarrow{AB} , respectively, are collinear if and only if: $\frac{AN}{NB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MA} = -1.$

T 5.6.6: If \triangle is any triangle, then the assiciated Morley triangle is equilateral.

Hyperbolic Geometry

T 6.1.1: For every triangle $\triangle ABC$, $\sigma(\triangle ABC) < 180^{\circ}$.

C 6.1.2: For every triangle $\triangle ABC$, $0^{\circ} < \delta(\triangle ABC) < 180^{\circ}$

T 6.1.3: For every convex quadrilateral $\Box ABCD$, $\sigma(\Box ABCD) < 360^{\circ}$.

C 6.1.4: The summit angles in a Saccheri quadrilateral are acute.

C 6.1.5: The fourth angle in a Lambert quadrilateral is acute.

T 6.1.6: There does not exist a rectangle.

T 6.1.7: In a Lambert quadrilateral, the length of a side between two right angles is strictly less than the length of the opposite side.

C 6.1.9: In a Saccheri quadrilateral, the length of the altitude is less than the length of a side.

C 6.1.10: In a Saccheri quadrilateral, the length of the summit is greater than the length of the base.

T 6.1.11 (AAA): If $\triangle ABC$ is similar to $\triangle DEF$, then $\triangle ABC$ is congruent to $\triangle DEF$.

T 6.1.12: If $\Box ABCD$ and $\Box A'B'C'D'$ are two Saccheri quadrilaterals such that $\delta(\Box ABCD) = \delta(\Box A'B'C'D')$ and $\overline{CD} \cong \overline{C'D'}$, then $\Box ABCD \cong \Box A'B'C'D'$.

T 6.2.1: If *l* is a line, *P* is an external point, and *m* is a line such that *P* lies on *m*, then there exists at most one point *Q* such that $Q \neq P$, *Q* lies on *m*, and d(Q, l) = d(Q, l).

T 6.2.3: If l and m are parallel lines and there exist two points on m that are equidistant from l, then l and m admit a common perpendicular.

T 6.2.4: If lines l and m admit a common perpendicular, then that common perpendicular is unique.

T 6.2.4: Let l and m be parallel lines cut by a transversal t. Alternate interior angles formed by l and m with transversal t are congruent if and only if l and m admit a common perpendicular and t passes through the midpoint of the common perpendicular segment.

T 6.3.2: Let K be the intersecting set for P and \overrightarrow{AB} . If $r \in K$, then $s \in K$ for every s with 0 < s < r, and there exists $t \in K$ such that t > r.

T 6.3.5: The critical number depends only on d(P, l).

T 6.3.7: $\kappa : (0, \infty) \to (0, 90]$ is a nonincreasing function; that is, a < b implies $\kappa(a) \ge \kappa(b)$.

T 6.3.8: Every angle of parallelism is acute and every critical number is less than 90.

<u>Circles</u>

T 8.1.4: If γ is a circle and l is a line, then the number of points in $\gamma \cap l$ is 0, 1 or 2.

T 8.1.7 (Tangent Line): Let t be a line, $\gamma = \mathcal{C}(O, r)$ a circle, and P a point of $t \cap \gamma$. The line t is tangent to the circle γ at the point P if and only if $\overrightarrow{OP} \perp t$.

T 8.1.8: If γ is a circle and t is a tangent line, then every

point of t except for P is outside γ .

T 8.1.9 (Secant Line): If $\gamma = C(O, r)$ is a circle and l is a secant line that intersects γ at distinct points P and Q, then O lies on the perpendicular bisector of the chord \overline{PQ} .

T 8.1.10: If γ is a circle and l is a secant line such that l intersects γ at points P and Q, then every point on the interior of \overline{PQ} is inside γ and every point of $l \setminus \overline{PQ}$ is outside γ .

T 8.1.11 (Elementary Circular Continuity): If γ is a circle and l is a line such that l contains a point A that is inside γ and a point B that is outside γ , then l is a secant line for γ .

C 8.1.12: If γ is a circle and l is a line such that l contains a point A that is inside γ , then l is a secant line for γ .

T 8.1.15 (Tangent Circles): If the circles $\gamma_1 = \mathcal{C}(O_1, r_1)$ and $\gamma_2 = \mathcal{C}(O_2, r_2)$ are tangent at P, then the centers O_1 and O_2 are distinct and the three points O_1, O_2 , and P are collinear. Furthermore, the circles share a common tangent line at P.

T 8.2.2 (Circumscribed Circle): A triangle can be circumscribed if and only if the perpendicular bisectors of the sides of the triangle are concurrent. If a triangle can be circumscribed, then the circumcenter and the circumcircle are unique.

T 8.2.3: The Euclidean Parallel Postulate is equivalent to the assertion that every triangle can be cicumscribed.

T 8.2.4: If the Euclidean Parallel Postulate holds, then every triangle can be circumscribed.

C 8.2.5: In Euclidean geometry the three perpendicualar bisectors of the sides of any triangle are concurrent and meet at the circumcenter of the triangle.

T 8.2.8 (Inscribed Circle): Every triangle has a unique inscribed circle. The bisectors of interior angles in any triangle are concurrent and the point of concurrency is the incenter of the triangle.

T 8.2.12: Let γ be a cricle and P_1 a point on γ . For each $n \leq 3$ there is a regular polygon $P_1P_2 \cdots P_n$ inscribed in γ .

T 8.3.1: Let $\triangle ABC$ be a triangle and let M be the midpoint of \overline{AB} . If AM = MC, then then $\angle ACB$ is a right angle.

C 8.3.2: If the vertices of triangle $\triangle ABC$ lie on a circle and \overline{AB} is a diameter of that circle, then $\angle ACB$ is a right angle.

T 8.3.3: Let $\triangle ABC$ be a triangle and let M be the midpoint of \overline{AB} . If $\angle ACB$ is a right angle, then AM = MC.

C 8.3.4: If $\angle ACB$ is a right triangle, then \overline{AB} is a diameter of the circle that circumscribes $\triangle ABC$.

T 8.3.5 (30-60-90): If the interior angles in triangle $\triangle ABC$ measure 30°, 60°, 90°, then the length of the side opposite the 30° angle is one half the length of the hypotenuse.

T 8.3.6 (Converse 30-60-90): If $\triangle ABC$ is a right triangle such that the length of one leg is one-half the length of the hypotenuse, then the interior angles of the triangle measure 30° , 60° , and 90° .

T 8.3.9 (Central Angle): The measure of an inscribed angle for a circle is one half the measure of the corresponding central angle.

C 8.3.10 (Inscribed Angle): If two inscribed angles intercept the same arc, then angles are congruent.

T 8.3.12: The power of a point is well defined; that is, the same value is obtained regardless of which line l is used in the definition as long as the line has at least one opint of intersection with the circle.

<u>Transformations</u>

T 10.1.6: The composition of two isometries is an isometry. The inverse of an isometry is an isometry.

T 10.1.7 (Properties of isometries): Let $T : \mathbb{P} \to \mathbb{P}$ be an isometry. Then T preserves;

1. collinearity; that is, if P, Q, and R are three collinear points, then T(P), T(Q), and T(R) are colleinear,

2. betweenness of points; that is, if P, Q, and R are three points such that P * Q * R, then T(P) * T(Q) * T(R),

3. segments; that is, if A and B are points and A' and B' are their images under T, then $T(\overline{AB}) = \overline{A'B'}$ and $\overline{A'B'} \cong \overline{AB}$,

4. lines; that is, if l is a line, then T(l) is a line,

5. betweenness of rays; that is, if \overrightarrow{OP} , \overrightarrow{OQ} , and \overrightarrow{OR} are three rays such that \overrightarrow{OQ} is between \overrightarrow{OP} and \overrightarrow{OR} , then $\overrightarrow{O'Q'}$ is between $\overrightarrow{O'P'}$ and $\overrightarrow{O'R'}$,

6. angles; that is, if $\angle BAC$ is an angle, then $T(\angle BAC)$ is an angle and $T(\angle BAC) \cong \angle BAC$,

7. triangles; that is, if $\triangle BAC$ is a triangle, then $T(\triangle BAC)$ is a triangle and $T(\triangle BAC) \cong \triangle BAC$,

8. circles; that is, if γ is a circle with center O and radius r, then $T(\gamma)$ is a circle with center T(O) and radius r,

9. areas; that is, if R is a polygonal region, then T(R) is a polygonal region and $\alpha(T(R)) = \alpha(R)$.

T 10.1.8 (Existence Uniqueness Isometries): If $\triangle ABC$ and $\triangle DEF$ are two triangles with $\triangle ABC \cong \triangle DEF$, then there exists a unique isometry T such that T(A) = D, T(B) = E, and T(C) = F. Furthermore, T is the composition of either two or three reflections.

C 10.1.9: If f and g are two isometries and A, B, and C are three noncollinear points such that f(A) = g(A), f(B) = g(B), and f(C) = g(C), then f(P) = g(P) for every point in P.

L 10.1.10: An isometry that fixes three noncollinear points is the identity; that is, if A, B, and C are three noncollinear points and f is an isometry such that f(A) = A, f(B) = B, f(C) = C, then f = i.

C 10.1.11: Every isometry of the plane can be expressed as a composition of reflections. The number of reflections required is either two or three.

T 10.2.2 (Half-Turn): Let l and m be two lines that are perpendicular at O and let $h_O = \rho_m \circ \rho_l$ be the half-turn about O determined by these two lines;

1. if P is any point different from O, then O is the midpoint of the segment from P to $h_O(P)$,

2. if *n* and *s* are any two lines that are perpendicular at *O*, then $h_O = \rho_s \circ \rho_n = \rho_n \circ \rho_s$.

C 10.2.3: The point O is the only fixed point of h_O .

T 10.2.5 (Rotation): Let R_{AOB} be the rotation with center O and angle $\angle AOB$;

1. if *P* is any point different from *O* and $P'' = R_{AOB}(P)$, then $\mu(\angle POP'') = \mu(\angle AOB)$, **2.** if *n* is any line with $O \in n$, then there exist lines *s* and *t* such that $R_{AOB} = \rho_s \circ \rho_n = \rho_n \circ \rho_t$.

C 10.2.6: If $\mu(\angle AOB) \neq 0$, then *O* is the only fixed point of R_{AOB} .

T 10.2.8 (Translation): Let T_{AB} be a transition, where A and B are distinct points, and let $k = \overleftarrow{AB}$:

1. If P is a point on k, then $P' = T_{AB}(P)$ is the point on k such that PP' = AB and $\overrightarrow{PP'}$ is equivalent to \overrightarrow{AB} . If P is a point not on k, then $P' = T_{AB}(P)$ is on the same side of k as P.

2. If *n* is any line that is perpendicular to *k*, then there exist lines *s* and *t* such that $R_{AOB} = \rho_s \circ \rho_n = \rho_n \circ \rho_t$.

C 10.2.9: If $A \neq B$, then T_{AB} has no fixed points.

T 10.3.2 (Glide Reflection): An isometry is a glide reflection if and only if it can be written as the composition of three reflections.

L 10.3.3: If l, m, and n are three lines that are concurrent at P, then there exists a line s such that P lies on s and $\rho_l \circ \rho_m = \rho_n \circ \rho_s$.

L 10.3.4: If l, m, and n are three lines that share a common perpendicular k, then there exists a line s such that $s \perp k$ and $\rho_l \circ \rho_m = \rho_n \circ \rho_s$.

L 10.3.5: If l, m, and n are three lines such that l and m intersect, then $\rho_l \circ \rho_m \circ \rho_n$ is a glide reflection.

L 10.3.6: If l, m, and n are three lines such that m and n intersect, then $\rho_l \circ \rho_m \circ \rho_n$ is a glide reflection.

T 10.3.7 (Classification Euclidean Motions): Every Euclidean motion is either the identity, a reflection, a half-turn, a rotation, a translation, or a glide reflection.

A 10.5.1 (Reflection Postulate): For every line l there exists a transformation $\rho_l : \mathbb{P} \to \mathbb{P}$, called the reflection in l, that satisfies the following conditions:

1. If P lies on l, then P is a fixed point for ρ_l .

2. If *P* lies in one of the half-planes determined by *l*, then $\rho_l(P)$ lies in the opposite half-plane.

3. ρ_l preserves collinearity, distance and angle measure.

T 10.5.5: The Reflection Postulate implies the Side-Angle-Side triangle congruence condition.

T 10.7.3 If $I_{O,r}$ is an inversion and P and Q are points that are not collinear with O, then $\triangle OPQ$ is similar to $\triangle OQ'P'$.

T 10.7.4 If $I_{O,r}$ is an iversion and l is a line that does not contain O, then $I_{O,r}(l \cup \{\infty\})$ is a circle that contains O.

C 10.7.5 If $I_{O,r}$ is an inversion and α is a circle such that $O \in$, then $I_{O,r}(\alpha - \{O\})$ is a line.

T 10.7.6 If *l* is a line and *O* lies on *l*, then $I_{O,r}(l \cup \{\infty\}) = l \cup \{\infty\}$.

T 10.7.7: If $I_{O,r}$ is an inversion and α is a circle that O does not lie on α , then $I_{O,r}(\alpha)$ is a circle.

T 10.7.9: If the circle β is orthogonal to C(O, r), then $I_{O,r}(\beta) = \beta$.

T 10.7.10: Let $\mathcal{C} = C(O, r)$ and β be two circles. If there exists a point Q on β such that $Q' = I_{O,r}(Q)$ also lies on β and $Q' \neq Q$, then \mathcal{C} is orthogonal to β .

C 10.7.11: Let C = C(O, r) and β be two circles. Then C is orthogonal to β if and only if $I_{O,r}(\beta) = \beta$.

C 10.7.12: If C = C(O, r) is a circle and R and S are two points inside C that do not lie on the same diameter of C, then there exists a unique circle γ such that R and S both lie on γ and γ is orthogonal to C.

T 10.7.13: Let C = C(O, r) be a circle and let P be a point inside C that is different from O. For every line t such that P lies on t but O does not lie on t, there exists a unique circle α such that t is tangent to α at P and α is orthogonal to C.

T 10.7.15: If γ is a circle, P is a point on γ , O is a point not on γ , $I_{O,r}$ is an inversion, and C is a point on γ that is not antipodal to P, then the angle between $\gamma(P, C)$ and $\overrightarrow{PP'}$ is congruent to the angle between $\gamma'(P', C')$ and $\overrightarrow{P'P}$.

T 10.7.16: If *l* is a line that does not pass through O, $I_{O,r}$ is an inversion, γ' is the image of *l* under $I_{O,r}$, and *P* and *C* are two distinct points on *l*, then $\angle P'PC$ is congruent to the angle between $\gamma'(P', C')$ and $\overrightarrow{P'P}$.

T 10.7.17: If each of γ_1 and γ_2 is either a line or a circle, P is a point that lies on both γ_1 and γ_2 , C_1 and C_2 are points on γ_1 and γ_2 , and $I_{O,r}$ is an inversion, then the angle between $\gamma_1(P, C_1)$ and $\gamma_2(P, C_2)$ is congruent to the angle between $\gamma'_1(P', C'_1)$ and $\gamma'_2(P', C'_2)$.

T 10.7.19: If A, B, P, Q, and O are all distinct and A', B', P', and Q' are the images of A, B, P, Q under $I_{O,r}$, then [AB, PQ] = [A'B', P'Q'].

1. Kilder

[1] Gerard A. Venema, Foundaditons of Geometry Second Edition, MA2401 Geometry.