Formulas Collection MA2401 - Geometry

O. Olsen ${ }^{\text {a }}$
${ }^{a}$ Institutt for fysikk, NTNU, Trondheim, Norge.

$\mathrm{T}=$ Theorem, $\mathrm{C}=$ Corollary, $\mathrm{L}=$ Lemma, $\mathrm{A}=$ Axiom, definitions are omitted.

Axiomatic Systems and Geometry Incidence

IA 1: For every pair of distinct points P and Q there exists exactly one line l such that both P and Q lie on l.

IA 2: For every line l there exists at least two distinct points P and Q such that both P and Q lie on l.

IA 3: There exists three points that do not all lie on any one line.

Euclidian Parallel Postulate: For every line l and for every point P that does not lie on l, there is exactly one line m such that P lies on m and $m \| l$.

Elliptic Parallel Postulate: For every line l and for every point P that does not lie on l, there is no line m such that P lies on $m \| l$.

Hyperbolic Parallel Postulate: For every line l and for every point P that does not lie on l, there are at least two lines m and n such that P lies on both m and n, and both m and n are both parallel to l.

T 2.6.3: If l is any line, there exists at least one point P such that P does not lie on l.

T 2.6.4: If P is any point, then there are at least two distinct lines l and m such that P lies on both l and m.

T 2.6.5: If l is any line, then there exists lines m and n such that l, m and n are distinct and both m and n intersect l.

T 2.6.6: If P is any point, then there exists at least one line l such that P does not lie on l.

T 2.6.7: There exist three distinct lines such that no point lies on all three of the lines.

T 2.6.8: If P is any point, then there exist points Q and R such that P, Q and R are noncollinear.

T 2.6.9: If P and Q are two points such that $P \neq Q$, then there exists a point R such that P, Q and R are noncollinear.

Axioms for Plane Geometry

A 3.1.1 (Existence Postulate): The collection of all points forms a nonempty set. There is more than one point in that set.

A 3.1.3 (Incidence Postulate): Every line is a set of points. For every pair of distinct points A and B there is exactly one line l such that $A \in l$ and $B \in l$.

T 3.1.7: If l and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both l and m.

A 3.2.1 (Ruler Postulate): For every pair of points P and Q there exists a real number $P Q$, called the distance from P to Q. For each line l there is a one-to-one correspondence from l to \mathbb{R} such that if P and Q are points on that line that corresponds to the real numbers x and y, then $P Q=|x-y|$.

T 3.2.7: If P and Q are any two points, then:

1. $P Q=Q P$,
2. $P Q \geq 0$, and
3. $P Q=0$ if and only if $P=Q$

C 3.2.8: $A * C * B$ if and only $B * C * A$.
3.2.16 (Ruler Placement Postulate): For every pair of distinct points P and Q, there is a coordinate function $f: \overleftrightarrow{P Q} \rightarrow \mathbb{R}$ such that $f(P)=0$ and $f(Q)>0$

T 3.2.17 (Betweenness for Points): Let l be a line; A, B, and C be three distinct points that all lie on l; and $f: l \rightarrow \mathbb{R}$ be a coordinate function for l. The point C is between A and B if and only if either $f(A)<f(C)<f(B)$ or $f(A)>f(C)>f(B)$.

C 3.2.18: Let A, B, and C be three points such that B lies on $\overrightarrow{A B}$. Then $A * B * C$ if and only if $A B<A C$.

C 3.2.19: If A, B, and C are three distinct collinear points, then exactly one of them lies between the other two.

C 3.2.20: Let A and B be two distinct points. If f is a coordinate function for $l=\overleftrightarrow{A B}$ such that $f(A)=0$ and $f(B)>0$, then $\overrightarrow{A B}=\{P \in l \mid f(P) \geq 0\}$.

T 3.2.22 (Existence, Uniqueness for Midpoints): If A and B are distinct points, then there exists a unique point M such that M is the midpoint of $\overline{A B}$.

T 3.2.23 (Point Construction): If A and B are distinct points and d is any nonnegative real number, then there exists a unique points C such that C lies on $\overrightarrow{A B}$ and $A C=d$.

A 3.3.2 (Plane Separation): For every line l, the points that do not lie on l form two disjoint, nonempty sets H_{1} and H_{2}, called half-planes bounded by l, such that the following conditions are satisfied:

1. Each of H_{1} and H_{2} is convex.
2. If $P \in H_{1}$ and $Q \in H_{2}$, then $\overline{P Q}$ intersects l.

T 3.3.9 (Ray Theorem): Let l be a line, A a point on l, and B an external point for l. If C is a point on $\overrightarrow{A B}$ and $C \neq A$, then B and C are on the same side of l.

T 3.3.10: Let A, B, and C be three noncollinear points and let D be a point on the line $\overleftrightarrow{B C}$. The point D is between points B and C if and only if the ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

T 3.3.12 (Pasch's Axiom): Let $\triangle A B C$ be a triangle and let l be a line such that none of A, B, and C lies on l. If l intersects $\overline{A B}$, then l also intersects either $\overline{A C}$ or $\overline{B C}$.

A 3.4.1 (Protractor Postulate): For every angle $\angle B A C$ there is a real number $\mu(\angle B A C)$, called the measure of $\angle B A C$, such that the following conditions are satisfied:

1. $0^{\circ} \leq \mu(\angle B A C)<180^{\circ}$ for every angle $\angle B A C$
2. $\mu(\angle B A C)=0^{\circ}$ if and only if $\overrightarrow{A B}=\overrightarrow{A C}$
3. For each real number $r, 0<r<180$, and for each halfplane H bounded by $\overleftrightarrow{A B}$ there exists a unique ray $\overrightarrow{A E}$ such that E is in H and $\mu(\angle B A E)=r^{\circ}$
4. If the ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then $\mu(\angle B A D)+\mu(\angle D A C)=\mu(\angle B A C)$.

L 3.4.4: If A, B, C, and D are four distinct points such that C and D are on the same side of $\overleftrightarrow{A B}$ and D is not on $\overleftrightarrow{A C}$, then either C is in the interior of $\angle B A D$ or D is in the interior of $\angle B A C$.

T 3.4.5 (Betweenness Rays): Let A, B, C, and D be four distinct points such that C and D lie on the same side of $\overleftrightarrow{A B}$. Then $\mu(\angle B A D)<\mu(\angle B A C)$ if and only if $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

T 3.4.7 (Existence and Uniqueness for Angle Bisectors): If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle B A C$.

T 3.5.1 (Z-Theorem): Let l be a line and let A and D be distinct points on l. If B and E are points on opposite sides of l, then $\overrightarrow{A B} \cap \overrightarrow{D E}=\emptyset$.

T 3.5.2 (Crossbar): If $\triangle A B C$ is a triangle and D is a point in the interior of $\angle B A C$, then there is a point G such that G lies on both $\overrightarrow{A D}$ and $\overrightarrow{B C}$.

T 3.5.3: A point D is in the interior of the angle $\angle B A C$ if and only if the ray $\overrightarrow{A D}$ intersects the interior of the segment $\overline{B C}$.

T 3.5.5 (Linear Pair): If angles $\angle B A D$ and $\angle D A C$ form a linear pair, then $\mu(\angle B A D)+\mu(\angle D A C)=180^{\circ}$.

L 3.5.7: If $C * A * B$ and D is in the interior of $\angle B A E$, then E is in the interior of $\angle D A C$.

T 3.5.9: If l is a line and P is a point on l, then there exists exactly one line m such that P lies on m and $m \perp l$.

T 3.5.11 (Existence, Uniqueness Perpendicular Bisectors): If D and E are two distinct points, then there exists a unique perpendicular bisector of $\overline{D E}$.

T 3.5.13 (Vertical Angles): Vertical angles are congruent.

L 3.5.14: Let $[a, b]$ and $[c, d]$ be closed intervals of real numbers and let $f:[a, b] \rightarrow[c, d]$ be a function. If f is strictly increasing and onto, then f is continuous.

A 3.6.3 (SAS): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\overline{A B} \cong \overline{D E}, \angle A B C \cong \angle D E F$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

T 3.6.5 (Isosceles): The base angles of an isosceles triangle are congruent.

Neutral Geometry

T 4.1.2 (YVT): The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

T 4.1.3 (Existence, Uniqueness Perpendiculars): For every line l and for every point P, there exists a unique line m such that P lies on m and $m \perp l$.

T 4.2.1 (ASA): If two angles and the included side of one triangle are congruent to the corresponding parts of a second triangle, then the two triangles are congruent.

T 4.2.2 (Converse Isosceles): If $\triangle A B C$ is a triangle such that $\angle A B C \cong \angle A C B$, then $\overline{A B} \cong \overline{A C}$.

T 4.2.3 (AAS): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle A B C \cong \angle D E F, \angle B C A \cong \angle E F D$, and $\overline{A C} \cong \overline{D F}$, then $\triangle A B C \cong \triangle D E F$.

T 4.2.5 (Hypotenuse-Leg): If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

T 4.2.6: If $\triangle A B C$ is a triangle, $\overline{D E}$ is a segment such that $\overline{D E} \cong \overline{A B}$, and H is a hal-plane bounded by $\overleftrightarrow{D E}$, then there is a unique point $F \in H$ such that $\triangle D E F \cong \triangle A B C$.

T 4.2.7 (SSS): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{C A} \cong \overline{F D}$, then $\triangle A B C \cong \triangle D E F$.

T 4.3.1 (Scalene): Let $\triangle A B C$ be a triangle. Then $A B>$ $B C$ if and only if $\mu(\angle A C B)>\mu(\angle B A C)$.

T 4.3.2 (Triangle Inequality): If A, B, and C are three noncollinear points, then $A C<A B+A C$.

T 4.3 .3 (Hinge): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $A B=D E, A C=D F$, and $\mu(\angle B A C)<$ $\mu(\angle E D F)$, then $B C<E F$.

T 4.3.4: Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l. If R is any point on l that is different from F, then $P R>P F$.

T 4.3.6 (Pointwise Characterization Angle Bisector): Let A, B, and C be three noncollinear points and let P be a point in the interior og $\angle B A C$. Then P lies on the angle bisector of $\angle B A C$ if and only if $d(P, \overleftrightarrow{A B})=$ $d(P, \overleftrightarrow{A C})$.

T 4.3.7 (Pointwise Characterization Perpendicular Bisector): Let A and B be distinct points. A point P lies on the perpendicular bisector of $\overline{A B}$ if and only if $P A=P B$.

T 4.4.2 (AIVT): If l and l^{\prime} are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then $l \perp l^{\prime}$.

C 4.4.4 (Corresponding Angles): If l and l^{\prime} are lines cut by a transversal t in such a way that two corresponding angles are congruent, then l is parallel to l^{\prime}.

C 4.4.5: If l and l^{\prime} are lines cut by a transversal t in such a way that two nonalternating interior angles on the same side of t are supplements, then l is parallel to l^{\prime}.

C 4.4.6 (Existence Parallels): If l is a line and P is an external point, then there is a line m such that P lies on m and m is parallel to l.

C 4.4.7: The Elliptic Parallel Postulate is false in any model for neutral geometry.

C 4.4.8: If l, m, and n are three lines such that $m \perp l$ and $n \perp l$, then either $m=n$ or $m \| n$.

T 4.5.2 (Saccheri-Legendre): If $\triangle A B C$ is any triangle, then $\sigma(\triangle A B C) \leq 180^{\circ}$.

L 4.5.3: If $\triangle A B C$ is any triangle, $\mu(\angle C A B)+\mu(\angle A B C)<180^{\circ}$.

L 4.5.4: If $\triangle A B C$ is a triangle and E is a point in the interior og $\overline{B C}$, then
$\sigma(\triangle A B E)+\sigma(\triangle E C A)=\sigma(\triangle A B C)+180^{\circ}$.
L 4.5.5: If A, B, and C are three noncollinear points, then there exists a point D that does not lie on $\overleftarrow{A B}$ such that $\sigma(\triangle A B D)=\sigma(\triangle A B C)$ and the angle measure of one of the interior angles in $\triangle A B D$ is less than or equal to $\frac{1}{2} \mu(\angle C A B)$

C 4.5.6: The sum of the measures of two interior angles of a triangle is less than or equal to the measure of their remote exterior angle.

C 4.5.7 (Converse Euclid's fifth): Let l and l^{\prime} be two lines cut by a transversal t. If l and l^{\prime} meet on one side of t, then the sum of the measures of the two interior angles on that side of t is strictly less than 180°.

T 4.6.4: If $\square A B C D$ is a convex quadrilateral, then $\sigma(\square A B C D) \leq 360^{\circ}$.

T 4.6.6: Every parallelogram is a convex quadrilateral.
T 4.6.7: If $\triangle A B C$ is a triangle, D is between A and B, and E is between A and C, then $\square B C E D$ is a convex quadrilateral.

T 4.6.8: The quadrilateral $\square A B C D$ is convex if and only if the diagonals $\overline{A C}$ and $\overline{B D}$ have an interior point in common.

C 4.6.9: If $\square A B C D$ and $\square A C B D$ are both quadrilaterals, then $\square A B C D$ is not convex. If $\square A C B D$ is a quadrilateral.

T 4.7.3+ Each of the following statements is equivalent to the Euclidian Parallel Postulate: 1. Proclus's Axiom: If l and l^{\prime} are parallel lines and $t \neq l$ is a line such that t intersects l, then t^{\prime} also intersects l^{\prime}.
2. If l and l^{\prime} are parallel lines and t is a transversal such that $t \perp l$, then $t \perp l^{\prime}$
3. If l, m, n, and k are lines such that $k \| l, m \perp k$, and $n \perp l$, then either $m=n$ or $m \| n$.
4. Transistivity of Parallelism: If l is parallel to m and m is parallel to n, then either $l=n$ or $l \| n$.
5. Converse AIVT: If two parallel lines are cut by a transversal, then both pairs of alternate interior angles are congruent.
6. Euclid's Postulate V: If l and l^{\prime} are two lines but by a transversal t in such a way that the sum of the measures of the two interior angles on one side of t is less than 180°, then l and l^{\prime} intersects on that side of t.
7. Hilbert's PP: For every line l and for every external point P there exists at most one line m such that P lies on m and $m \| l$.
8. Angle Sum: If $\triangle A B C$ is a triangle, then $\sigma(\triangle A B C)=$ 180°.
9. Wallis's Postulate: If $\triangle A B C$ is a triangle and $\overline{D E}$ is a segment, then there exists a point F such that $\triangle A B C \sim$ $\triangle D E F$.
10. Clairaut's Axiom: There exists a rectangle.

L 4.7.5 Suppose $\overline{P Q}$ is a segment and Q^{\prime} is a point such that $\angle P Q Q^{\prime}$ is a right angle. For every $\epsilon>0$ there exists a point T on $\overrightarrow{Q Q^{\prime}}$ such that $\mu(\angle P T Q)<\epsilon^{\circ}$.

T 4.8.2 (Additivity Defect):

1. If $\triangle A B C$ is a triangle and E is a point in the interior of $\overline{B C}$, then:
$\delta(\triangle A B C)=\delta(\triangle A B E)+\delta(\triangle E C A)$.
2. If $\square A B C D$ is a convex quadrilateral, then
$\delta(\square A B C D)=\delta(\triangle A B C)+\delta(\triangle A C D)$.
T 4.8.4: The following statements are equivalent:
3. There exists a triangle whose defect is 0°.
4. There exists a right triangle whose defect is 0°.
5. There exists a rectangle.
6. There exist arbitrarily LARGE rectangles.
7. The defect of every right triangle is 00°.
8. The defect of every triangle is 0°.

C 4.8.5: In any model for neutral geometri, there exists one triangle qhose defect is o° if and only if every triangle has defect o°.

L 4.8.6: If $\triangle A B C$ is any triangle, then at least two of the interior angles in $\triangle A B C$ are acute. If the interior angles
at vertices A and B are acute, then the foot of the perpendicular from C to $\overleftrightarrow{A B}$ is between A and B.

T 4.8.10 (Saccheri quadrilaterals): If $\square A B C D$ is a Saccheri quadrilateral with base $\overline{A B}$, then:

1. The diagonals $\overline{A C}$ and $\overline{B D}$ are congruent.
2. The summit angles $\angle B C D$ and $\angle A D C$ are congruent.
3. The segment joining the midpoint of $\overline{A B}$ to the midpoint of $\overline{C D}$ is perpendicular to both $\overline{A B}$ and $\overline{C D}$.
4. $\square A B C D$ is a parallelogram.
5. $\square A B C D$ is a convex quadrilateral.
6. The summit angles $\angle B C D$ and $\angle A D C$ are either right or acute.

T 4.8.11 (Lambert quadrilaterals): If $\square A B C D$ is a Lambert quadrilateral with right angles at vertices A, B, and C, then:

1. $\square A B C D$ is a parallelogram.
2. $\square A B C D$ is a convex quadrilateral.
3. $\angle A D C$ is either right or acute.
4. $B C \leq A D$.

T 4.8.12 (Aristotle): If A, B, and C are three noncollinear points such that $\angle B A C$ is an aute angle and P and Q are two points on $\overrightarrow{A B}$ with $A * P * Q$, then $d(P, \overleftrightarrow{A C})<$ $d(d, \overleftrightarrow{A C})$. Furthermore, for every positive number d_{0} there exists a point R on $\overrightarrow{A B}$ such that $d(R, \overleftrightarrow{A C})>d_{0}$

T 4.9.1 (Universal Hyperbolic): If there exists one line l_{0}, an external point P_{0}, and at least two lines that pass through P_{0} and are parallel to l_{0}, then for every line l and for every external point P there exist at least two lines that pass through P and are parallel to l.

Euclidian Geometry

T 5.1.1 (Converse AIVT): If two parallel lines are cut by a transversal, then both pairs of alternate interior angles are congruent.

T 5.1.2 (Euclid V): If l and l^{\prime} are two lines cut by a transversal t such that the sum of the measures of the two interior angles on side of t is less than 180°, then l and l^{\prime} intersect on that side of t.

T 5.1.3 (Angle Sum): For every triangle $\triangle A B C, \sigma(\triangle A B C)=$ 180°.

T 5.1.4 (Wallis's Postulate): If $\triangle A B C$ is a triangle and $\overline{D E}$ is a segment, then there exists a point F such that $\triangle A B C \sim \triangle D E F$.

T 5.1.5 (Proclus's Theorem): If l and l^{\prime} are parallel lines and $t \neq l$ is a line such that t intersects l, then t also intersects l^{\prime}.

T 5.1.6: If l and l^{\prime} are parallel lines and t is a transversal such that $t \perp l$, then $t \perp l^{\prime}$.

T 5.1.7: If l, m, n, and k are lines such that $k \| l, m \perp k$, and $n \perp l$, then either $m=n$ or $m \| n$.

T 5.1.8 (Transistivity Parallelism): If $l \| m$ and $m \| n$, then either $l=n$ or $l \| n$.

T 5.1.9 (Claiaut's Axiom): There exists a rectangle.
T 5.1.10 (Euclidian Rectangles): If $\square A B C D$ is a parallelogram, then:

1. The diagonals divide the quadrilateral into congruent triangles (i.e., $\triangle A B C \cong \triangle C D A$ and $\triangle A B D \cong \triangle C D B$). 2. The opposite sides are congruent (i.e., $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D})$.
2. The opposite angles are congruent (i.e., $\angle D A B \cong \angle B C D$ and $\angle A B C \cong \angle C D A$).
3. The diagonals bisect each other (i.e., $\overline{A C}$ and $\overline{B D}$ intersect in a point E that is the midpoint of each.

T 5.2.1 (Parallel Projection): Let l, m, and n be distinct parallel lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t^{\prime} be a tranversal that cuts the lines at points A^{\prime}, B^{\prime}, and C^{\prime}, respectively. Assume that $A * B$ astC. Then $\frac{A B}{A C}=\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}}$.

L 5.2.2: Let l, m, and n be distinct parallel lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t^{\prime} be a transversal that cuts the lines at points A^{\prime}, B^{\prime}, and C^{\prime}, respecitvely. Assume $A * B * C$. If $\overline{A B} \cong \overline{B C}$, then $\overline{A^{\prime} B^{\prime}} \cong \overline{B^{\prime} C^{\prime}}$.

T 5.3.1 (Fundamental Similar Triangles): IF $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\triangle A B C \sim \triangle D E F$, then $\frac{A B}{A C}=\frac{D E}{D F}$.

C 5.3.2: If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\triangle A B C \sim \triangle D E F$, then there is a positive number r sych that $D E=r \cdot A B, D F=r \cdot A C$, and $E F=r \cdot B C$.

T 5.3.3 (SAS Similarity Criterion): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle C A B \cong \angle F D E$ and $\frac{A B}{A C}=\frac{D E}{D F}$, then $\triangle A B C \sim \triangle D E F$.

T 5.4.1 (Pythagoras): If $\triangle A B C$ is a right triangle with right angle at vertex C, then $a^{2}+b^{2}=c^{2}$.

T 5.4.3: The height of a right triangle is the geometric mean of the lenghts of the projections of the legs.

T 5.4.4: The length of one leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the projection of that leg onto the hypotenuse.

T 5.4.5 (Converse Pythagoras): If $\triangle A B C$ is a triangle such that $a^{2}+b^{2}=c^{2}$, then $\angle B C A$ is a right angle.

T 5.5.2 (Pythagorean Identity): For any angle θ, $\sin ^{2} \theta+\cos ^{2} \theta=1$.

T 5.5.3 (Law of sines): If $\triangle A B C$ is any triangle, then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

T 5.5.4 (Law of cosines): If $\triangle A B C$ is any triangle, then $c^{2}=a^{2}+b^{2}-2 a b \cos C$.

T 5.6.2 (Median Concurrence): The three medians of any triangle are concurrent; that is, if $\triangle A B C$ is a triangle and D, E, and F are the midpoints of the sides opposite A, B, and C, respectively, then $\overline{A D}, \overline{B E}$, and $\overline{C F}$ all intersect in a common point G. Moreover, $A G=2 G D$, $B G=2 G E$, and $C E=2 G F$.

T 5.6.3 (Euler Line): The orthocenter H, the circumcenter O, and the centroid G of any triangle are collinear. Furthermore, G is between H and O (unless the triangle is equilateral, in which case the three points coincide) and $H G=2 G O$.

T 5.6.4 (Ceva's): Let $\triangle A B C$ be a triangle. The proper Cevian lines $\overleftrightarrow{A L}, \overleftrightarrow{B M}$, and $\overleftrightarrow{C N}$ are concurrent (or mutually parallel) if and only if:
$\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1$.
T 5.6.5 (Menelaus): Let $\triangle A B C$ be a triangle. Three proper Menelaus points L, M, and N on the lines $\overleftrightarrow{B C}$, $\overleftrightarrow{A C}$, and $\overleftrightarrow{A B}$, respectively, are collinear if and only if: $\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=-1$.

T 5.6.6: If \triangle is any triangle, then the assiciated Morley triangle is equilateral.

Hyperbolic Geometry

T 6.1.1: For every triangle $\triangle A B C, \sigma(\triangle A B C)<180^{\circ}$.
C 6.1.2: For every triangle $\triangle A B C$,
$0^{\circ}<\delta(\triangle A B C)<180^{\circ}$
T 6.1.3: For every convex quadrilateral $\square A B C D, \sigma(\square A B C D)<$ 360°.

C 6.1.4: The summit angles in a Saccheri quadrilateral are acute.

C 6.1.5: The fourth angle in a Lambert quadrilateral is acute.

T 6.1.6: There does not exist a rectangle.

T 6.1.7: In a Lambert quadrilateral, the length of a side between two right angles is strictly less than the length of the opposite side.

C 6.1.9: In a Saccheri quadrilateral, the length of the altitude is less than the length of a side.

C 6.1.10: In a Saccheri quadrilateral, the length of the summit is greater than the length of the base.

T 6.1.11 (AAA): If $\triangle A B C$ is similar to $\triangle D E F$, then $\triangle A B C$ is congruent to $\triangle D E F$.

T 6.1.12: If $\square A B C D$ and $\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two Saccheri quadrilaterals such that $\delta(\square A B C D)=\delta\left(\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$ and $\overline{C D} \cong \overline{C^{\prime} D^{\prime}}$, then $\square A B C D \cong \square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

T 6.2.1: If l is a line, P is an external point, and m is a line such that P lies on m, then there exists at most one point Q such that $Q \neq P, Q$ lies on m, and $d(Q, l)=d(Q, l)$.

T 6.2.3: If l and m are parallel lines and there exist two points on m that are equidistant from l, then l and m admit a common perpendicular.

T 6.2.4: If lines l and m admit a common perpendicular, then that common perpendicular is unique.

T 6.2.4: Let l and m be parallel lines cut by a transversal t. Alternate interior angles formed by l and m with transversal t are congruent if and only if l and m admit a common perpendicular and t passes through the midpoint of the common perpendicular segment.

T 6.3.2: Let K be the intersecting set for P and $\overrightarrow{A B}$. If $r \in K$, then $s \in K$ for every s with $0<s<r$, and there exists $t \in K$ such that $\mathrm{t}>\mathrm{r}$.

T 6.3.5: The critical number depends only on $d(P, l)$.
T 6.3.7: $\kappa:(0, \infty) \rightarrow(0,90]$ is a nonincreasing function; that is, $a<b$ implies $\kappa(a) \geq \kappa(b)$.

T 6.3.8: Every angle of parallelism is acute and every critical number is less than 90 .

Circles

T 8.1.4: If γ is a circle and l is a line, then the number of points in $\gamma \cap l$ is 0,1 or 2 .

T 8.1.7 (Tangent Line): Let t be a line, $\gamma=\mathcal{C}(O, r)$ a circle, and P a point of $t \cap \gamma$. The line t is tangent to the circle γ at the point P if and only if $\overleftrightarrow{O P} \perp t$.

T 8.1.8: If γ is a circle and t is a tangent line, then every
point of t execpt for P is outside γ.
T 8.1.9 (Secant Line): If $\gamma=\mathcal{C}(O, r)$ is a circle and l is a secant line that intersects γ at distinct points P and Q, then O lies on the perpendicular bisector of the chord $\overline{P Q}$.

T 8.1.10: If γ is a circle and l is a secant line such that l intersects γ at points P and Q, then every point on the interior of $\overline{P Q}$ is inside γ and every point of $l \backslash \overline{P Q}$ is outside γ.

T 8.1.11 (Elementary Circular Continuity): If γ is a circle and l is a line such that l contains a point A that is inside γ and a point B that is outside γ, then l is a secant line for γ.

C 8.1.12: If γ is a circle and l is a line such that l contains a point A that is inside γ, then l is a secant line for γ.

T 8.1.15 (Tangent Circles): If the circles $\gamma_{1}=\mathcal{C}\left(O_{1}, r_{1}\right)$ and $\gamma_{2}=\mathcal{C}\left(O_{2}, r_{2}\right)$ are tangent at P, then the centers O_{1} and O_{2} are distinct and the three points O_{1}, O_{2}, and P are collinear. Furthermore, the circles share a common tangent line at P.

T 8.2.2 (Circumscribed Circle): A triangle can be circumscribed if and only if the perpendicular bisectors of the sides of the triangle are concurrent. If a triangle can be circumscribed, then the circumcenter and the circumcircle are unique.

T 8.2.3: The Euclidean Parallel Postulate is equivalent to the assertion that every triangle can be cicumscribed.

T 8.2.4: If the Euclidean Parallel Postulate holds, then every triangle can be circumscribed.

C 8.2.5: In Euclidean geometry the three perpendicualar bisectors of the sides of any triangle are concurrent and meet at the circumcenter of the triangle.

T 8.2.8 (Inscribed Circle): Every triangle has a unique inscribed circle. The bisectors of interior angles in any triangle are concurrent and the point of concurrency is the incenter of the triangle.

T 8.2.12: Let γ be a cricle and P_{1} a point on γ. For each $n \leq 3$ there is a regular polygon $P_{1} P_{2} \cdots P_{n}$ inscribed in γ.

T 8.3.1: Let $\triangle A B C$ be a triangle and let M be the midpoint of $\overline{A B}$. If $A M=M C$, then then $\angle A C B$ is a right angle.

C 8.3.2: If the vertices of triangle $\triangle A B C$ lie on a circle and $\overline{A B}$ is a diameter of that circle, then $\angle A C B$ is a right angle.

T 8.3.3: Let $\triangle A B C$ be a triangle and let M be the midpoint of $\overline{A B}$. If $\angle A C B$ is a right angle, then $A M=M C$.

C 8.3.4: If $\angle A C B$ is a right triangle, then $\overline{A B}$ is a diameter of the circle that circumscribes $\triangle A B C$.

T 8.3.5 (30-60-90): If the interior angles in triangle $\triangle A B C$ measure $30^{\circ}, 60^{\circ}, 90^{\circ}$, then the length of the side opposite the 30° angle is one half the length of the hypotenuse.

T 8.3 .6 (Converse $\mathbf{3 0 - 6 0 - 9 0}$): If $\triangle A B C$ is a right triangle such that the length of one leg is one-half the length of the hypotenuse, then the interior angles of the triangle measure $30^{\circ}, 60^{\circ}$, and 90°.

T 8.3.9 (Central Angle): The measure of an inscribed angle for a circle is one half the measure of the corresponding central angle.

C 8.3.10 (Inscribed Angle): If two inscribed angles intercept the same arc, then angles are congruent.

T 8.3.12: The power of a point is well defined; that is, the same value is obtained regardless of which line l is used in the definition as long as the line has at least one opint of intersection with the circle.

Transformations

T 10.1.6: The composition of two isometries is an isometry. The inverse of an isometry is an isometry.

T 10.1.7 (Properties of isometries): Let $T: \mathbb{P} \rightarrow \mathbb{P}$ be an isometry. Then T preserves;

1. collinearity; that is, if P, Q, and R are three collinear points, then $T(P), T(Q)$, and $T(R)$ are colleinear,
2. betweenness of points; that is, if P, Q, and R are three points such that $P * Q * R$, then $T(P) * T(Q) * T(R)$,
3. segments; that is, if A and B are points and A^{\prime} and B^{\prime} are their images under T, then $T(\overline{A B})=\overline{A^{\prime} B^{\prime}}$ and $\overline{A^{\prime} B^{\prime}} \cong \overline{A B}$,
4. lines; that is, if l is a line, then $T(l)$ is a line,
5. betweenness of rays; that is, if $\overrightarrow{O P}, \overrightarrow{O Q}$, and $\overrightarrow{O R}$ are three rays such that $\overrightarrow{O Q}$ is between $\overrightarrow{O P}$ and $\overrightarrow{O R}$, then $\overrightarrow{O^{\prime} Q^{\prime}}$ is between $\overrightarrow{O^{\prime} P^{\prime}}$ and $\overrightarrow{O^{\prime} R^{\prime}}$,
6. angles; that is, if $\angle B A C$ is an angle, then $T(\angle B A C)$ is an angle and $T(\angle B A C) \cong \angle B A C$,
7. triangles; that is, if $\triangle B A C$ is a triangle, then $T(\triangle B A C)$ is a triangle and $T(\triangle B A C) \cong \triangle B A C$,
8. circles; that is, if γ is a circle with center O and radius r, then $T(\gamma)$ is a circle with center $T(O)$ and radius r,
9. areas; that is, if R is a polygonal region, then $T(R)$ is a polygonal region and $\alpha(T(R))=\alpha(R)$.

T 10.1.8 (Existence Uniqueness Isometries): If $\triangle A B C$ and $\triangle D E F$ are two triangles with $\triangle A B C \cong \triangle D E F$, then
there exists a unique isometry T such that $T(A)=D$, $T(B)=E$, and $T(C)=F$. Furthermore, T is the composition of either two or three reflections.

C 10.1.9: If f and g are two isometries and A, B, and C are three noncollinear points such that $f(A)=g(A)$, $f(B)=g(B)$, and $f(C)=g(C)$, then $f(P)=g(P)$ for every point in P.

L 10.1.10: An isometry that fixes three noncollinear points is the identity; that is, if A, B, and C are three noncollinear points and f is an isometry such that $f(A)=A$, $f(B)=B, f(C)=C$, then $f=\imath$.

C 10.1.11: Every isometry of the plane can be expressed as a composition of reflections. The number of reflections required is either two or three.

T 10.2.2 (Half-Turn): Let l and m be two lines that are perpendicular at O and let $h_{O}=\rho_{m} \circ \rho_{l}$ be the half-turn about O determined by these two lines;

1. if P is any point different from O, then O is the midpoint of the segment from P to $h_{O}(P)$,
2. if n and s are any two lines that are perpendicular at O, then $h_{O}=\rho_{s} \circ \rho_{n}=\rho_{n} \circ \rho_{s}$.

C 10.2.3: The point O is the only fixed point of h_{O}.
T 10.2.5 (Rotation): Let $R_{A O B}$ be the rotation with center O and angle $\angle A O B$;

1. if P is any point different from O and $P^{\prime \prime}=R_{A O B}(P)$, then $\mu\left(\angle P O P^{\prime \prime}\right)=\mu(\angle A O B), \mathbf{2}$. if n is any line with $O \in n$, then there exist lines s and t such that $R_{A O B}=$ $\rho_{s} \circ \rho_{n}=\rho_{n} \circ \rho_{t}$.

C 10.2.6: If $\mu(\angle A O B) \neq 0$, then O is the only fixed point of $R_{A O B}$.

T 10.2.8 (Translation): Let $T_{A B}$ be a transition, where A and B are distinct points, and let $k=\overleftrightarrow{A B}$

1. If P is a point on k, then $P^{\prime}=T_{A B}(P)$ is the point on k such that $P P^{\prime}=A B$ and $\overrightarrow{P P^{\prime}}$ is equivalent to $\overrightarrow{A B}$. If P is a point not on k, then $P^{\prime}=T_{A B}(P)$ is on the same side of k as P.
2. If n is any line that is perpendicular to k, then there exist lines s and t such that $R_{A O B}=\rho_{s} \circ \rho_{n}=\rho_{n} \circ \rho_{t}$.

C 10.2.9: If $A \neq B$, then $T_{A B}$ has no fixed points.
T 10.3.2 (Glide Reflection): An isometry is a glide reflection if and only if it can be written as the composition of three reflections.

L 10.3.3: If l, m, and n are three lines that are concurrent at P, then there exists a line s such that P lies on s and $\rho_{l} \circ \rho_{m}=\rho_{n} \circ \rho_{s}$.

L 10.3.4: If l, m, and n are three lines that share a common perpendicular k, then there exists a line s such that $s \perp k$ and $\rho_{l} \circ \rho_{m}=\rho_{n} \circ \rho_{s}$.

L 10.3.5: If l, m, and n are three lines such that l and m intersect, then $\rho_{l} \circ \rho_{m} \circ \rho_{n}$ is a glide reflection.

L 10.3.6: If l, m, and n are three lines such that m and n intersect, then $\rho_{l} \circ \rho_{m} \circ \rho_{n}$ is a glide reflection.

T 10.3.7 (Classification Euclidean Motions): Every Euclidean motion is either the identity, a reflection, a halfturn, a rotation, a translation, or a glide reflection.

A 10.5.1 (Reflection Postulate): For every line l there exists a transformation $\rho_{l}: \mathbb{P} \rightarrow \mathbb{P}$, called the reflection in l, that satisfies the following conditions:

1. If P lies on l, then P is a fixed point for ρ_{l}.
2. If P lies in one of the half-planes determined by l, then $\rho_{l}(P)$ lies in the opposite half-plane.
3. ρ_{l} preserves collinearity, distance and angle measure.

T 10.5.5: The Reflection Postulate implies the Side-AngleSide triangle congruence condition.

T 10.7.3 If $I_{O, r}$ is an inversion and P and Q are points that are not collinear with O, then $\triangle O P Q$ is similar to $\triangle O Q^{\prime} P^{\prime}$.

T 10.7.4 If $I_{O, r}$ is an iversion and l is a line that does not contain O, then $I_{O, r}(l \cup\{\infty\})$ is a circle that contains O.

C 10.7.5 If $I_{O, r}$ is an inversion and α is a circle such that $O \in$, then $I_{O, r}(\alpha-\{O\})$ is a line.

T 10.7.6 If l is a line and O lies on l, then $I_{O, r}(l \cup\{\infty\})=$ $l \cup\{\infty\}$.

T 10.7.7: If $I_{O, r}$ is an inversion and α is a circle that O does not lie on α, then $I_{O, r}(\alpha)$ is a circle.

T 10.7.9: If the circle β is orthogonal to $C(O, r)$, then $I_{O, r}(\beta)=\beta$.

T 10.7.10: Let $\mathcal{C}=C(O, r)$ and β be two circles. If there exists a point Q on β such that $Q^{\prime}=I_{O, r}(Q)$ also lies on β and $Q^{\prime} \neq Q$, then \mathcal{C} is orthogonal to β.

C 10.7.11: Let $\mathcal{C}=C(O, r)$ and β be two circles. Then \mathcal{C} is orthogonal to β if and only if $I_{O, r}(\beta)=\beta$.

C 10.7.12: If $\mathcal{C}=C(O, r)$ is a circle and R and S are two points inside \mathcal{C} that do not lie on the same diameter of \mathcal{C}, then there exists a unique circle γ such that R and S both lie on γ and γ is orthogonal to \mathcal{C}.

T 10.7.13: Let $\mathcal{C}=C(O, r)$ be a circle and let P be a point inside \mathcal{C} that is different from O. For every line t such that P lies on t but O does not lie on t, there exists a unique circle α such that t is tangent to α at P and α is orthogonal to \mathcal{C}.

T 10.7.15: If γ is a circle, P is a point on γ, O is a point not on $\gamma, I_{O, r}$ is an inversion, and C is a point on γ that is not antipodal to P, then the angle between $\gamma(P, C)$ and $\overrightarrow{P P^{\prime}}$ is congruent to the angle between $\gamma^{\prime}\left(P^{\prime}, C^{\prime}\right)$ and $\overrightarrow{P^{\prime} P}$.

T 10.7.16: If l is a line that does not pass through $O, I_{O, r}$ is an inversion, γ^{\prime} is the image of l under $I_{O, r}$, and P and C are two distinct points on l, then $\angle P^{\prime} P C$ is congruent to the angle between $\gamma^{\prime}\left(P^{\prime}, C^{\prime}\right)$ and $\overrightarrow{P^{\prime} P}$.

T 10.7.17: If each of γ_{1} and γ_{2} is either a line or a circle, P is a point that lies on both γ_{1} and γ_{2}, C_{1} and C_{2} are points on γ_{1} and γ_{2}, and $I_{O, r}$ is an inversion, then the angle between $\gamma_{1}\left(P, C_{1}\right)$ and $\gamma_{2}\left(P, C_{2}\right)$ is congruent to the angle between $\gamma_{1}^{\prime}\left(P^{\prime}, C_{1}^{\prime}\right)$ and $\gamma_{2}^{\prime}\left(P^{\prime}, C_{2}^{\prime}\right)$.

T 10.7.19: If A, B, P, Q, and O are all distinct and A^{\prime}, B^{\prime}, P^{\prime}, and Q^{\prime} are the images of A, B, P, Q under $I_{O, r}$, then $[A B, P Q]=\left[A^{\prime} B^{\prime}, P^{\prime} Q^{\prime}\right]$.

1. Kilder

[1] Gerard A. Venema, Foundaditons of Geometry Second Edition, MA2401 Geometry.

