
Fabrication methods

By dimension

0D nanostructures:	1D nanostructures	2D nanostructures
Nanoparticles	Nano-fibers	Thin films
Buckyballs	Nanorods	Plates
Quantum dots	Nanowires	Graphene
	CNT's	SAMs
1. Sol-gel synthesis	Growth mechanism:	1. Thin film deposition
2. Vapour phase synthesis	1. Evaporation-condensation	2. Physical vapor depositon
3. Heterogeneous nucleation	growth (VS)	(PVD)
	2. Dissolution-condensation	- MBE
Colloidal synthesis	growth (VS)	- PLD
Reverse micelle synthesis	3. Vapour-Liquid-Solid (VLS)	- Sputtering
	growth	3. Chemical vapor deposition
	4. Solution-Liquid-Solid	(CVD)
	(SLS) growth	- ALD
		 Spray pyrolisis
	MBE with VLS	4. Liquid phase methods:
	Electrospinning	- Electrochemical
	Tools like Atomic Force	deposition
	Microscopy (AFM), Scanning	- CSD: Chemical
	Electron Microscopy (SEM),	solution deposition like
	Transmission Electron	spin, spray and dip
	Microscopy (TEM), Near-field	coating
	Scanning Optical Microscopy	- Langmuir-Blodgett
	(SNOM), Scanning Probe	(LB) films
	Microscopy (SPM), X-Ray	- SAMs: Self-Assembled
	Diffraction (XRD), and Energy	monolayers
	Dispersive X-Ray	
	Spectroscopy (EDX) are some	
	of the techniques generally	
	used for this purpose	

By approach

Bottom-up	In between	Top-down
Colloidal synthesis	Lithography	Ball milling
Sol-gel		Etching
Hydrothermal synthesis		Attrition
Spray pyrolysis		Quenching

Confined synthesis

Thermodynamically confined	Kinetically confined
Thermodynamically confined nanoparticle	Kinetically confined nanoparticle synthesis
synthesis is about controlling nucleation and	involves the use of "confined spaces" in order to
growth in order to limit the size of the	limit the size of nanoparticles. Nucleation and
nanoparticles. The nucleation rate should be as	growth considerations are therefore not as
high as possible in order to produce small	important for limiting the size. In a reverse
particles (need high supersaturation). The	micelle, for instance, there is a small volume
growth rate should be as low as possible in order	containing water where the reaction is occurring,
to limit the growth (dilute solutions).	and the size is therefore limited by this space.

By method

Method	Desription	Material
Electrospinning	A viscous liquid (usually a polymer solution) is ejected	Polymers!!!
	from an orifice in a strong electric field. When the electric	i olymeio
	forces overcome the surface tension, a thin jet shoots out	Also, polymer/
	from the conical droplet (Taylor cone). The jet is	oxide hybrids.
	electrically charged, which causes buckling/curling of the	
	fibre. The solvent evaporates, and the fibre is collected	Embedded NPs.
	on a flat surface or rolled up.	
Sol-gel processing	1. Sol: Formation of stable solution by hydrolysis and	any oxide
	partial condensation of precursor.	composition,
Products:	2. Gel: Formation of metal oxo bonds	but also some
Coatings and thin	3. Aging: Condensation continues within the gel, resulting	non-oxides+
films, monoliths,	in shrinking and densification along with expulsion of	new hybrid
composites, porous	solvent.	organic-
membranes,	4. Drying: Water and other volatile impurities are	inorganic
powders and fibers	removed from the gel network.	materials which
	5. Dehydration: Removal of surface M-OH groups via	do not exist
	calcination at ~ 800 °C.	naturally
	6. Thermal treatment: Densification of the gels at	
	temperatures > 800 °C via sintering and grain growth	carbides,
		nitrides, and
		sulfide in inert
		atmosphere
		with aprotic solvent
Electrochemical	Tomplate method where electrochemical deposition is	NOT
deposition (with	Template method where electrochemical deposition is used to fill the template.	SUITABLE for
templates)	used to fill the template.	metals
(comprates)	A template can be formed either by lithographic	motais
	methods) or it is possible to for example use commercial	Specific
	alumina membranes with specific diameters. In this	diameter
	process a thin film of a conducting material is first	requirement, not
	deposited on one side of the membrane. This forms the	length
	cathode in the deposition process. The membrane with	Em Cr. Ca
	the conductive film is then immersed in a solution	Ex: Cu, Ga
	containing a Cu-salt. When a potential is applied, the Cu-	
	ions are reduced and deposited on the cathode. In this	
	case the Cu will only deposit on the conductive surface,	
	meaning it will start to fill up the pores. Since the growth	
	rate is not uniform across the entire surface, the length	
	of the nanorods will vary. But the diameter is determined	
	by the diameter of the pores in the template. The	
	template can later be removed to produce individual	
	free-standing nanorods.	0.15
Molecular Beam	In MBE, catalyst particles (f.ex. gold) are deposited on a	Specific
Epitaxy (MBE)	substrate. The size of the gold particles can be controlled	diameter and
	and thereby controlling the diameter of the nanowires.	length
	After deposition of the catalyst particles, the substrate is	requirements
	placed in the reaction chamber of the MBE and ultrahigh	
	vacuum is achieved (~10-10 torr). Knudson cells (resistive	

	heating) are used to heat the precursors (Ge) which is in solid form. The evaporated precursor forms the molecular beam which is deposited on the substrate. The gold catalysts particles which are now in a liquid form (heated substrate), are saturated with the precursor. When the particle reaches super-saturation the precursors starts to precipitate on the surface of the catalyst particles. <u>Growth mechanism: VLS</u> The Ge nanowires proceed to grow by VLS-mechanism and the growth continues as long as the catalyst is kept in the liquid state and precursor is supplied. The growth is very homogeneous across the substrate, and due to the ultrahigh vacuum, the environment is extremely clean, producing high quality nanowires with a narrow size distribution.	MBE – III-IV semiconductors, 2D materials, oxides
Pulsed laser deposition (PLD)	Specific diameter and length requirements.	Specific diameter and length requirements.
Lithography		Create templates
Reverse micelle	Reducing a metal salt chemically	Metals
reactor	Controlling the shape and size by combining the use of reverse micelles and a salt or capping agent	NB: small enough size NB: difficult to get only one shape
PECVD	PECVD is a chemical vapor deposition process used to deposit thin films from a gas state to a solid state on a substrate. PECVD system consists of a vacuum chamber with 2 parallel electrodes. The space between the electrodes is filled with the reacting gases, and a plasma is created between the electrodes. For metallic films, the plasma can be created by Direct Current (DC) discharge between two electrodes. In the case of nonmetallic films, the Plasma is generally created by Radio Frequency (RF). (Alternative Current (AC)). The system operates at pressures in the range 0.13 mbar to 1.59 mbar. In comparison to standard CVD techniques that require 600°C to 800°C, PECVD operates at lower temperatures	CNTs, Diamond thin films
CVD		polycrystalline Si, SiO2, SiNH, Tungsten, C- based
PLD	PLD is a physical vapor deposition technique where a high power pulsed laser beam is focused to strike a target of the desired material. Material is then vaporised and deposited as a film on a substrate facing the target. This process can be performed in ultrahigh vacuum or in the	VERSATILE complex oxides YBa2Cu3O7, batteries etc • Sputtering – metals, complex

	presence of background gas, such as oxygen when depositing thin films of oxides.	oxides, 2D materials
ALD	ALD is a cyclic method where monolayers are added one by one	high k oxides: HfO2, ZrO2, TiN, TaN, Cu interconnects, noble metals, (FRAM, DRAM), TiO2
Sputtering		metals, complex oxides, 2D materials
SAMs (Self- Assembled Monolayers)		Organosilicon or alkylsilane on hydroxylated surfaces, such as SiO2 on Si, Al2O3 on Al, glass, etc. • Alkanethiols on gold, silver and copper • Dialkyl sulfides on gold • Dialkyl disulfides on gold • Alcohols and amines on platinum • Carboxylic acids on aluminium oxide and silver

By material

Material	Synthesis method
Metallic 1D	 Electrochemical deposition onto a substrate with template pattern
	prepared by lithographic methods with sufficient precision, e.g. EBL.
	 Electron beam reduction of gaseous Ag precursors.
	• Dissolution-condensation with a seed crystal and a growth directing agent.
	VLS is generally not suitable for metallic nanowires.
Semiconductor 1D	Very suitable for VLS* method using e.g. MBE or CVD for providing suitable
	Ge precursor molecules. *A metal catalyst with appropriate solubility (from
	phase diagrams)
Polypropylene 1D	Electrospinning is the obvious choice of method as polypropylene is a
	polymer, fast and inexpensive method.

Oxide NP's 1D NiAu nanospindle heterogeneous nuc	Spray pyrolysis is an ideal method for preparing large quantities because one can use a continuous reactor and aqueous solvent, thus enabling complex stoichiometries. Nanosized particles are prepared with proper choice of nozzle and furnace temperature. Finally, a naturally arising distribution of particle size is favourable for sintering dense ceramics. - scalability/continuous reactor - aqueous solvent enabling complex stoichiometries Seed mediated growth
neterogeneous nuc	 Metallic Precursor, Reducing + Stabilizing agent, Reaction Medium, Seed Molecule, Metallic Precursor
MCM-41	See textbook p.312.
(mesoporous)	 sol-gel chemistry with alkoxide precursor hydrolysis and polymerization/condensation → continuous network. Template: Surfactants (above CMC) → self-assembly → cylindrical micelles → hexagonal packing. Heat treatment: remove organics and water.
Ordered	Surfactant concentration must be controlled and well above the critical
mesoporous	micelle concentration. • The surfactant concentration determines if we get
materials using	micelles, cylinders, layers or multilayered micelles. • Sol-gel synthesis is used
surfactants	with the surfactant structure as a template which determines where the
	subsequent voids will be, in other words the pore structure. • The final step
	involves removing the surfactant templates, either by calcining or by solvent extraction.
Core-shell	<u>Core:</u> To produce single crystalline Ge nanorods to be the core of the core-
nanowires	shell wires it is probably a good idea to utilize the VLS (Vapor-Liquid-Solid)
Ge with diameter = 5-10 nm and the	method. For the diameter to be about 5-10 nm, the catalyst must have an equivalent diameter. For example, gold NP's (of such a size that gives the wanted diameter when melted) could be used. The first step would then be
Amorphous silica (SiO2) shell 2 nm	sputtering these gold particles on a substrate before it is places in the reaction chamber for growth. Growth of the rods can happen after the gold is heated till they are liquid and can work as a catalyst – and as long as there is enough Ge-precursor present. The supply of Ge can either be supplied by PLD (laser ablation of Ge) or MBE (heated and evaporated Ge which then sublime). The growth time is what determines the length of the produced nanorods.
	<u>Shell:</u> To then cover the already produced nanorods in an amorphous silica shell, they could be dip-coated in a sol-gel-solution of silica, followed by a post-dip thermal treatment.
	Crystalline silica shell : If you have a source of solid crystalline silica, it could be produced directly in a reaction chamber like in VLS using either MBE or PLD to evaporate and then coat the nanorods. Another suggestion could be to heat the nanowire with an amorphous silica-shell until it crystallizes. This could be challenging due to possible reaction/changes in the Ge-core or Ge- silica interface caused by the high temperature needed for crystallization.
Core shell NP's in general	Sol-gel processing Ex:
	Step1: Synthesis of core
	• Step 2: Deposition of METAL by reduction of XX.
	• Step 3: Deposition of METAL 2 (presursor) in the presence of SURFACTANT
	(ex: CTAB) for generating a shell.

<u>Core synthesis:</u> The "obvious" method is to precipitate a (oxy)hydroxide, which is then heat-treated/dried to produce the desired oxide. Start by dissolving a 2:1 mix of FeCl3 and FeCl2 (Fe3O4 has a 2:1 ratio of Fe3+ and Fe2+) in a water-based phase and add a base (NaOH, NH3) whilst stirring. Alternatively, urea can be added, and the solution heated so that OH– is released. This gives more control of the reaction (more gentle addition of OH–). If a non-polar solvent had been on the list, the reverse micelle method would have been another good option here. <u>Shell synthesis:</u> Once the magnetite nanoparticles have been made and exist as an aqueous dispersion, a sol-gel precursor (TEOS) can be added along with a base to catalyse polycondensation, and this will result in a gel forming and encapsulating the magnetite particles. Since the core is an oxide, the particles will have a certain affinity for silica and do not need further functionalisation. This is essentially a heterogeneous nucleation process where silica precipitates on the surface of the magnetite particles.
Note that the use of surfactants is not strictly required for either step, but it is often done. In the sol-gel step, micelles can act as nucleation centres, and also contribute to making the silica shells porous in cases where this is desirable.
VLS difficult. Hydrothermal synthesis methods? Difficult to control shape and morphology Co-precipitation in reverse micelles would be quite challenging Too big for reverse micelles
Sol-gel processing + template method Here, step 1 +2: mixing precursors with solvents and required acid/base and other necessary organics) before the sol is filled in the pores of the template. In this case a commercial alumina membrane can be used.
After completing the remaining steps of the sol-gel process, the template can be removed to produce individual nanorods.
Generally synthesized by hydrothermal process Reagents: – Water – Silica source – Alumina source – Mineralizing agent – Structure directing agent
The method used to produce the structure shown here was pulsed laser deposition (PLD), but molecular beam epitaxy (MBE) could also be used. PLD is not always as clean as MBE and might therefore give more defects in the structure. However, PLD is often easier to use when more complex compositions such as Ga0.65Al0.35As are deposited. Here, the source already contains the correct stoichiometry and the material is ablated stoichiometrically from the source and deposited on the substrate. In MBE, several sources must be used to obtain this same material, and it is therefore more challenging to obtain the desired composition, although not impossible. Layers: the continuous layers are formed by depositing a layer (or multiple layers) of the desired material, and the layer grows in the Frank van der Merwe (layer-by-layer) mode. This growth occurs when $\gamma_{substrate} > \gamma_{adsorbate} +$ $\gamma_{interface}$. The quantum dots are formed by the Stanski-Krastanov mode. In this mode, a continuous layer is first formed, then at a critical thickness the growth

	changes into a three-dimensional island growth. The transition from continuous film to island structure can be quite abrupt in many pairs of metallic or semiconductor systems after the deposition of just a few monolayers. In practice, in the Stranski-Krastanov mode, island formation often results from competition between the surface energy which appears on the island faces and the elastic or plastic energy released in the bulk of the islands and/or the substrate. Stranski-Krastanov mode can be achieved if the lattice mismatch between the substrate and the deposited material is sufficiently large such that the stresses due to this lattice mismatch cannot be accommodated only by dislocations in the lattice. In order to produce the structure shown below, the layer-by-layer growth and the Stranski-Krastanov growth are applied several times in order to obtain the different layers.
Cylinderical crystalline SiO ₂ nanorods on glass substrate with d=250 nm, l=500nm	 Step 1: make a master wafer by f.ex lithography. Make cylindrical rods of a cheap and hard material (ex. Si) with the desired dimensions on a wafer (ex. Si) using lithography. Step 2: make a master mold Deposit a polymer (PMMA, PDMS etc.) on top of the master wafer. After the polymer has hardened, it can be removed and you're left with a mold with cylindrical holes.
Requirements: fast, cheap, simple and reproducible way	Step 3: nanoimprint lithography on sol-gel film Press the mold onto a sol-gel film of Si alkoxides on a glass substrate to create a pattern while heating (ca 150 oC) to form a stable xerogel. This mold can simply be lifted off and reused, which is a very important point here! Step 4: anneal Anneal the sample at 500-800 oC to finish the sol-gel reactions and to crystallize the SiO2.
Spherical gold nanoparticles with tunable size and a very narrow size distribution	1. Using a flask, HAuCl4 (= precursor) is dissolved in water, making a very dilute solution. The solution is heated on a hotplate with a magnetic stirrer to ensure a rapid mixing. A small amount of sodium citrate (=reduction agent) is added while the solution is boiling. This reduces the Au-ions to elemental Au nanoparticles of very small diameter.
	2. Since the question asked for nanoparticles with a very narrow size distribution, using reverse micelles would give extra points. Using a flask, HAuCl4 (= precursor) is dissolved in a mixture of water and isooctane (=oily phase) together with AOT (=surfactant) to produce a microemulsion/reverse micelles. The solution is heated on a hotplate with a magnetic stirrer to ensure a rapid mixing. A small amount of sodium citrate (=reduction agent) is added while the solution is boiling. This reduces the Au-ions to elemental Au nanoparticles which is limited in size by the reverse micelles. Note: NaBH4 can also be used as reduction agent.
Co nanoparticles	Reverse micelle reactor The two reagents are mixed with hexane, water and surfactant in two separate containers to obtain a dispersion of reverse micelles containing aqueous CoCl2 and a dispersion of Side 5 av 13 reverse micelles containing aqueous NaBH4. The two dispersions are then mixed, and because of Brownian motion some of them will collide and form a short-lived larger reverse micelle. The aqueous cores are thus mixed and a chemical reaction can occur. The reaction that occurs is the reduction of Co2+ to Co by the reducing agent NaBH4. The exact reaction mechanism can be complex and depends on the amount of oxygen present.

	The size of nanoparticles synthesized in reverse micelles can be controlled by the water content because the size of the reverse micelles increases with increasing water content. The size of the resulting nanoparticles will reflect the size of the reverse micelle, at least for smaller reverse micelles (< ~6 nm in diameter)
Rh@SiO2	Step1. Synthesis of Rh NPs using the precursor RhCl3 and the reducing
core@shell	reagent methanol, water is used as solvent.
nanostructures	Step2. Functionalization of the surface of Rh NPs. As NPs are inert, they do
	not form a passive layer in solution (such for example OH groups), so they will not react with silica to form the shell. In this case, functionalization of the surface of Rh NPs is required. APS is used to functionalize Rh NPs: Aqueous solution of APS is prepared and added to Rh NPs solution under stirring. $pH > 11 \rightarrow NH2$ with lone pair electrons can bind strongly to Rh surface.
	In addition to the anchoring of APS molecules on the surface of Rh NPs, hydrolysis and condensation processes take place resulting in the formation of Si-O-Si bridges:
	Step3. Sol-gel process will be used to coat the functionalized NPs with silica (amorphous SiO_2) the precursor used is TEOS. TEOS aqueous solution is prepared at pH 11
	Hydrolysis: Si(OR)4 + H2O \rightarrow Si(OR)3(OH) + ROH
	Condensation: (OR)3Si – OH + HO – Si(OR)3 \rightarrow (OR)3 Si – O – Si(OR)3 + H2O
	Or: (OR)3 Si – OR + HO – Si (OR)3 \rightarrow (OR)3 Si – O – Si(OR)3 + ROH
	MIX THE SOLUTION \rightarrow Aging process (24h) with continuous stirring A shell of amorphous SiO2 is formed around the Rh NPs.
Palladium (Pd)	Reverse micelle as reactor
Palladium (Pd) nanoparticles	Reverse micelle as reactor Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution.
No. 197	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown
No. 197	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10
No. 197	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2)
No. 197	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water- tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B)
No. 197	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion,
No. 197	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water- tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles
nanoparticles Cu nanostructures	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance CuCl2
nanoparticles Cu nanostructures by the	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance CuCl2 Surfactant, for instance, cetyltrimethylammonium bromide (CTAB)
nanoparticles Cu nanostructures by the microemulsion	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water- tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance CuCl2 Surfactant, for instance, cetyltrimethylammonium bromide (CTAB) Reducing agent, for instance hydrazine N2H4
nanoparticles Cu nanostructures by the	 Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water-tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance CuCl2 Surfactant, for instance, cetyltrimethylammonium bromide (CTAB)
nanoparticles Cu nanostructures by the microemulsion method	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water- tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance CuCl2 Surfactant, for instance, cetyltrimethylammonium bromide (CTAB) Reducing agent, for instance hydrazine N2H4 Two solvents: toluene C6H5CH3 (oily phase) and water H2O (aqueous phase) Other methods to produce metal nanoparticles could be precipitation and co-precipitation methods or vapor phase methods, for example by sputtering a Cu target to obtain Cu nanoparticles.
nanoparticles Cu nanostructures by the microemulsion	Step 1. The PdCl2 (Palladium (II) chloride) solution is prepared by dissolving PdCl2 in water, and adding HCl (drop by drop) to obtain a transparent brown solution. Step 2. PdCl2 aqueous solution is added to Na(AOT) in isooctane. The water- tosurfactant ratio (w) [H2O]/[AOT] should be adjusted to a value above 10 to have an access to the r-micelle (solution A) Step 3. A second population of r-micelles containing an aqueous solution of the reducing reagent NaBH4 is prepared in the same conditions than (step 2) with a ratio w =[H2O]/[AOT] above 10. (solution B) Step 4. Solution A and solution B are mixed, then under Brownian motion, the rmicelles will undergo collisions and coalescences and form a short-lived larger reverse micelle. Then the exchange of their content occurs resulting in the formation of Pd nanoparticles Cu precursor, for instance, cetyltrimethylammonium bromide (CTAB) Reducing agent, for instance hydrazine N2H4 Two solvents: toluene C6H5CH3 (oily phase) and water H2O (aqueous phase) Other methods to produce metal nanoparticles could be precipitation and co-precipitation methods or vapor phase methods, for example by

	Step 2: H2S is introduced to the chamber to react with ZnCl2 to deposit ZnS monolayer on the substrate. HCl is released as by-product and removed from the deposition chamber
Metallic	Electrochemical deposition
nanoparticles (Pd,	
Ni, Co)	
Spherical or	Reverse micelles as nanoreactors
worm-like Pd	
nanocrystals	
spherical PtFe	Reverse micelles as nanoreactors
nanocrystal	
Colloidal CdS	Growth termination
(Cadmium sulfide)	
Ag or Pt	Dissolution-condensation growth
nanowires	Precursor: AgNO ₃ and/or PtCl ₂
inuito wir es	i
T:O2 man ana da	
TiO2 nanorods	Electrophoretic deposition:
TiO2 nanorods	Template based: Electrode: Cu – Template: Polycarbonate membrane
TiO2 nanorods	
TiO2 nanorods	Template based: Electrode: Cu – Template: Polycarbonate membrane
TiO2 nanorods ZnO nanofibres	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min
	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning
	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate
ZnO nanofibres	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF).
ZnO nanofibres Si nanowires	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography
ZnO nanofibres Si nanowires Alkanethiol on Au	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide nanowires (VO ₂)	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM Nanoimprint lithography
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide nanowires (VO ₂)	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM Nanoimprint lithography
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide nanowires (VO ₂)	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM Nanoimprint lithography
ZnO nanofibres Si nanowires Alkanethiol on Au Vanadium oxide nanowires (VO ₂)	Template based: Electrode: Cu – Template: Polycarbonate membrane prepared by track-etching – Sol: TiO2 sol – Voltage: 0.3-0.8 V – Time: 60-90 min Electrospinning Precursor solution: Polyvinylpyrrolidone (PVP) and zinc acetate di-idrate (Zn(CH3COO)2·H2O) in dimethylformamide (DMF). Lithography SAM Nanoimprint lithography

Porous materials

	Example	Synthesis	Applications
Microporous: d<2nm	zeolites	<u>Hydrothermal (or</u> solvothermal) process.	Catalysts, Molecular sieves, adsorbents, templates or ion exchange(?).
		All precursors and reactants are placed in an autoclave. @Elevated temperature and pressure +Mineralizing agent →desired porous network.	
		Can be combined with sol- gel processing.	
Mesoporous: d=2-50 nm - Ordered - Random	MCM- series	1. Self-assembled surfactants as template	Supports, adsorbents, sieves, nanoscale chemical reactors

		2. Simultaneous sol-gel condensation around template	
		Ordered: Similar to microporous, but organic structure-directing agent. Micelles or reverse micelles are formed and the framework material is deposited on the outside of the micellar structures.	
Macroporous: d>50 nm	Sponge, soil		

Thin film growth modes

Frank-van der Merwe	Stranski–Krastanov (island-layer):	Volmer-Weber (island):
(layer-by-layer): In the layer-by-layer mode a new layer only begins when the previous one has been completed, and the successive layers tend to spread out.	Begins with two-dimensional growth and then continues by three- dimensional growth. In this case, the overall interaction energy between the adsorbed atom and the film varies significantly with the thickness of the deposited film, and this transition can be quite abrupt in many pairs of metallic or semiconductor systems after the deposition of just a few monolayers.	In the island growth mode small clusters nucleate directly on the surface of the substrate and the atoms tend to bind to each other rather than to the substrate.
		e.g., a transition metal on a noble metal or an oxide.
$\gamma_{substrate} >$ $\gamma_{adsrobate} + \gamma_{interface}$	Lattice mismatch \rightarrow change	$\gamma_{substrate} < \gamma_{adsrobate} + \gamma_{interface}$

Sol-gel thin films

Advantages	Disadvantages
Simple and inexpensive	• Limitation of film thickness due to crack
Low processing temperature	formation
• For large or complicated surfaces (dip coating)	• Short lifetime of the sols
• Easy to scale up	• Requires an ultimate densification heat treatment
Controlled composition	
Homogeneous coatings	
• Wide range of substrates: glass, plastics,	
metals, ceramics,	

Properties at nanoscale

Property	Change	Application

Unit cell volume/	acce down (we for ionic motorials)	
	goes down (up for ionic materials)	
lattice parameters		
Melting temperature	goes down	
Surface area	goes up	
Surface energy	Goes up	
Superparamagnetism	Sufficiently small single-domain	Suitable as magnetic
	ferromagnetic nanoparticles lose their	resonance contrast agents.
	(shape or intrinsic) magnetic anisotropy,	
	which scales with the volume of the	Data storage (small single-
	particle. With no magnetic anisotropy,	domain ferromagnets) -
	the magnetic moment can easily be	magnetization (up/down)
	reoriented by an external magnetic	represent bits (0/1).
	field, so the magnetic response of a	CHALLENGE: limit for how
	superparamagnetic nanoparticle is very	small the physical bits can be
	large. This is different from conventional	(due to superparamagnetism)
	-	and therefore a limit to how
	paramagnetism (as in magnetic	
	materials above T_c), where all the	high information density we
	individual spins are completely	can achieve with magnetic
	disordered. In the superparamagnetic	data storage.
	particle, all the spins are aligned, but	
	they can be aligned in any direction.	
Phase transition	normally goes down	
temperature		
Optical band gap	Can go up	
Mechanical	with respect to grain size in polycrystals,	
properties	not actually nanoparticles	
	larger for smaller particles until a lower	
	size limit where it decreases (Hall-Petch	
	limit)	
Equilibrium	Goes up??	
solubility?		

Properties characterization

Property	Ideal method	Less ideal methods that can be used
Crystal structure	TEM, XRD	Raman and IR can give some information
Chemical	EELS	SIMS, EDS, XPS and XRF
composition		
profile/element	STM, SEM, XRD, TEM	
distribution		
Surface morphology	AFM	Ellipsometry, SAXS and SEM
Morphology	TEM, AFM, STM, SEM	
Local electric	cAFM	STM
conductivity		
Ferroelectricity and	PFM	SEM, TEM, XRD, Raman, SHG
ferroelectric domain		
structure		
Hardness	AFM	
Topography	AFM, TEM, STM, SEM	

Need overview of SPM/STM/STEM/TEM flow chart

SEM – samples must be conductive – most electrons absorbed

(S)TEM – transmitted through sample (advantage EELS)

Characterization techniques

Technique	Material	Information
		Imaging. Surface topography view, looks 3D.
TEM/STEM		Both core and shell visible \rightarrow transmission microscopy. In example: bright field (strong scatter appear dark)
XPS		XPS spectra are obtained by irradiating a material with a beam of x-rays while simultaneously measuring the kinetic energy of electrons that escape from the top 0 to 10 nm of the material being analysed. The photoelectrons generated from atomic core level shells and emitted from the sample are counted and analysed for their kinetic energy. From this the binding energies of these core levels are determined. The atomic core level energies are characteristic for the elements, in addition energy shifts can be used to analyse the chemical bonding state. Quantitative analysis is possible. XPS allows quantification of elements and their chemical state to better than 1%. XPS requires ultrahigh vacuum (P < 10–9 mbar) conditions

Growth sites

Site	Property
Kink	Strong adsorption
Terrace	Weak adsorption
Ledge	Strong-ish adsorption
Vacancy	Strongest adsorption
Adatom	

	Energy
Corner	Highest = most broken bonds
Edge	Next highest (range on size) bigger = less broken bonds
Facets	Lowest (range on size) bigger = less broken bonds

SPM: Scanning Probe Microscopy

	STM (Scanning Tunneling Microscopy)	AFM (Atomic Force Microscopy)
Description	Scanning tunneling microscopy (STM) probes a surface using a conductive probe. A high voltage between the surface and the probe cause tunneling of electrons between the tip and the surface. The tunneling current is kept constant by changing the distance between the tip and the surface. Ergo, the measured distance/height will give information about both changes in atomic force of the surface (topography) and changes to the density of states of the surface (i.e different elements)	The surface is imaged by scanning a probe over it. The probe is a very narrow tip attached to a cantilever which can feel the atomic forces, either by measuring the deflection of the cantilever when scanning at constant height, or by recording the height in order to keep a constant force (deflection). Both techniques can be performed with either an oscillating (tapping mode) or static (contact) cantilever. This technique is therefore excellent for obtaining the topography of the sample. The conductivity of the tip depends on what kind of information one wants to obtain.
In common	Scanning probe techniques (inform Surface sensitive techniques & Nar	
Differences	 Changes the height to keep the tunneling current constant (i.e. feels both topography and differences in condictivity) tip must be conducting 	 Feels the atomic forces (i.e only topography) tip can be conducting,

Electron microscopy

Type of electron	Information	Techniques using type of e ⁻
Secondary	3D-like images	SEM
Backscattered	Composition – atomic number	SEM
	Grain orientation	
Auger		
Bremsstrahlung X-		
ray		
Characteristix x-	Chemical composition (EDS maps)	SEM
rays		
Elastically scattered	Diffraction and imaging	(S)TEM
Inelastically	Chemical composition (EELS maps)	(S)TEM (scanning transmission
scattered		microscopt)
Direct/transmitted		

X-ray scattering

	Information	Material?
XRD / WAXS	Crystallite size, Atomic positions, Lattice parameters	
SAXS	Particle shape, Particle size	

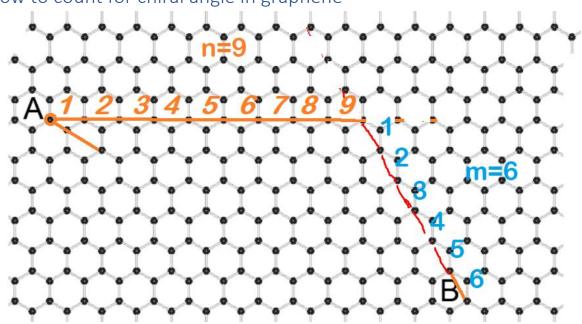
Gas adsorption

Measured property	Amount (mass or volume) of adsorbed gas as a function of partial pressure.		
Calculated property	 (Specific) surface area of the sample 		
	 Particle size if assuming particle shape (cubic, spherical) 		

Nanotechnology

Concerns	But nanotechnology can solve som problems
1. Huge gaps in knowledge	1. Water deficiency: decontamination by using porous
concerning risks	nanocomposites, disinfection by noble metal (Ag, Au, Cu)
2. Difficult to detect and	nanoparticles for instance embedded in paper filters or desalination
remove	with nanomembranes
3. Absence of regulation	2. Poorly targeted medical treatments: nanoparticles can enter cells
4. Difficult to predict the	and treat them locally instead of having to bombard the whole body
effects	with medicine.
5. Size-dependent properties	3. Food waste: better packaging with lower permeability of oxygen
6. Higher reactivity	and water
7. Changed persistence of	4. Stinky sports wear: Ag nanoparticles embedded into the fabric
particles inside tissues and	have an antimicrobial effect Icing: passive ice removal by
the environment	superhydrophobic/icephobic surfaces
	5. Low efficiency of LEDs: the company Crayonano uses GaAs
	nanorods grown directly on graphene to revamp the UVLED
	industry.
	6. Insufficient material strength: nanofillers can improve the strength
	of almost any material without changing the other properties
	7. High energy consumption in electronics: by down-sizing electrical
	components, we need less energy in order to operate them.

Particle size determination


Imaging: particle size

Scherrer equation gives crystallite size.

- → If mismatch with image analysis → Polycrystalline particle
- → If match → Single crystalline particle

Parameter control

Parameter	How to control it
Size of the core	Precipitation: Higher supersaturation leads to more homogeneous
particles	nucleation, with smaller size and a narrower size distribution. This is
	achieved by using higher concentrations of precursors, or by more rapid
	heating in the case of urea as source of OH– . If reverse micelle synthesis is
	used, the water/surfactant ratio is important (less water gives smaller r-
	micelles and ultimately smaller particles).
Thickness of shell	Thickness increases with increasing amount of TEOS. However, since we are
(silica f.ex)	dealing with heterogeneous nucleation, there is a risk if the amount
	(concentration) of TEOS is too high that primary nuclei will precipitate out,
	and these will be pure silica particles and not core-shell particles. Finally,
	enough time must be given for the silica shells to reach an appreciable
	thickness

How to count for chiral angle in graphene

Metallic if 2n + m = 3q, semiconductor if not

Ex: $2*9+6=24=3*8 \rightarrow \text{metallic}$

Deposition	Material	Typical Evaporant	Impurity	Deposition Rate	Temperature Range	Cost
Thermal	Metal or low melt-point materials	Au, Ag, Al, Cr, Sn, Sb, Ge, In, Mg, Ga CdS, PbS, CdSe, NaCl, KCl, AgCl, MgF ₂ , CaF ₂ , PbCl ₂	High	1 ~ 20 A/s	~ 1800 °C	Low
E-Beam	Both metal and dielectrics	Everything above, plus: Ni, Pt, Ir, Rh, Ti, V, Zr, W, Ta, Mo Al2O3, SiO, SiO2, SnO2, TiO2, ZrO2	Low	10 ~ 100 A/s	~ 3000 °C	High