Summary - Geometri part 1

What is geometry?

- Geo = greek for earth
- metre = for the grecle netrile for measurement
- Euclids elements

Why is Elements so important?

- First example of scientific work in an approx imately modern sense
- Book is based on
- A list of technical definitions
- 5 postulates
- 5 common notions
- Euclid deduced proots of theorems and defined more terms
- Euclid recognized: it is not possible to define everything. One has to start somewhere

Axiomatic systems

- Undefined terms: technical terms that will be used for the subject Examples: point, line.
- Defined terms/definitions. using the undefined land previously defined) terms to define new terms
- Axcoms/postulates: statements that are accepted without a proof. Everything else in the system should be logically deduced from them
- Theorems and proofs: logical consequences of the axioms
- Interpretations and models: An interpretation of an axiomatic system : a particular way to give meaning to the undefined terms in that system. An interpretation is called a model for the axiomatic system if the axioms are correctltrue statements in that interpretation.
- Consistence: Axioms are said to be consistent it no logical contradiction can be derived from them

Example: Incidence eneometry

- Undefined terms:
- point

- Line
- Lie on ("point P lies on line l) or incident Lpoint P is incident with line l)
(Definitions: collinear, roncollinear)
- Incidence axioms:

1. For every pair of distinct points P and Q, there exists exactly one line l such that both P and Q lie on l.
2. For every line l there exists at least two distinct points P and Q such that both P and Q lie on l.
3. There exist three noncollinear points

One example: Four point geometry

- Points: Symbols A, B, C, D
- Lines: sets of two points $\{A, B\},\{A, C\},\{A, D\},\{B, C\},\{B, D\},\{C, D\}$
- Lie on: "is an element of"

Fi.ex: $A \& D$ are both clements of the set $\{A, D\}$, because they both lie on the line $\overline{A D}$

Axiom 1: Always one line between two points
Axiom 2: Always two points on a line
Axiom 3: only two points per line, therefore three noncollinear points (A is not on $\overline{C D}$)
No sets contain three points

Parallel lines

- Parallel: two lines l and m are parallel if there is no point P such that P lies both on l and m (Notation: $l \| m$)

- The parallel postulates

For every line l and for every point P that does not lie on $l \ldots$

1. ... there is exactly one line m such that $p \in m$ and elm (Euclidian parallel postabte)
2.... there is no line m such that $P \in m$ and $l(1 m$ (Elliptic Parallel postulate)
2. ... there are at least two lines m and n such that $P \in m, P \in n$ and $l l m, l \| n$ (Hyperbolic parallel postulate)

3.

3.

The cartesian plane

The sphere

All points are on the surface of the sphere, and all lines are circles on the sphere
All lines' have the radius of the sphere
The lines always intersect $=$ no parallel lines
Not following the axioms of incidence geometry, infinetly circles through two points
The klein disk

$(x, y), x^{2}+y^{2}<1$ lonly lines inside the disk)
$l \| \mathrm{m}$, does not intersect inside the klein disk.
Hyperbolic parallel postulate
All axioms fulfilled

Axiomatic systems \longleftrightarrow Parallel postulates
we have now seen some examples of models of axiomatic systems and connected them to different parallel postulates:

- Cartesian plane: Euclidian parallel postulate
- The sphere: Elliptic parallel -postulate
- Klein disk: Hyperbolic parallel postulate

Schematic overview

Plane geometry/Neutral Geometry_

- Undefined terms in Plane Geometry:
- Point
- line

We will state 6 axioms for the neutral geometry.

- distance

Axioms 1-5 corresponds to the 5 undefined terms and "describe" their

- hals-plane properties
- angle measure

Axioms for neutral geometry -NG1
The existence postulate (3.1.1)

- The collection of all points forms a nonempty set. There is more than one point in that set
$\dot{p} \quad \dot{Q}$ (There are more than one point)

Axioms for neutral geometry -NG2
The Incidence postulate (3.1.3)

- Every line is a set of points. For each pair of distinct points A and B there is exactly one line l Such that $A \in l$ and $B \in l$

- Definition: parallel lines
- Two lines $l_{1} m$ parallel $(l \| m) \Leftrightarrow$ there is no point in common

- Theorem (2.6.2, 3.1.7)
- If l and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both l and m

Axioms for neutral geometry -NG3
The ruler postulate (3.2.1)

- For every pair of points P and Q there exists a real number $P Q$, called the distance from P to Q. For each line l there is a one-to-one correspondence from l to \mathbb{R} such that if P and Q are points on the line that correspond to the real numbers x and y, respectively, then $P Q=|x-y|$.
Lone can measure the distance of each pair of points on a line using real numbers. There is a one-to-one correspondence between the line and \mathbb{R}.
- Specifies basic properties of distance measurements
- Implies that it is possible to introduce (real number) coordinates on a line
- Implies that lines are continous (with no gaps)).

$$
\left.\begin{array}{l}
P=-0.5 \\
Q=1
\end{array}\right\} P Q=|x-y|=|-0,5-1|=|-1,5|=1,5
$$

- Definition: between (3.2.2), segment, ray (3.2.4)
- C is between A and B

$-\overline{A B}=\{A, B\} \cup\left\{\left.P\right|_{A \times P \times B\}}\right.$ (segment)
$\overrightarrow{A B}=\overrightarrow{A B}$ и \{P|A*B*P\} (ray)
Note: $\overline{A B} \cong \overline{C D}$, then $A B=C D$ (distance)
- Definition : metric (3.2.9)
- A metric is a function $D: \mathbb{P} \times \mathbb{P} \rightarrow \mathbb{R}$ such that

1) $D(P, Q)=D(Q, P)$ for evelyn two points P and Q (metric is symmetric)
2) $D(P, Q) \geq 0$ for every two points P and Q (metric is positive)

Metrics are used to describe what distance means in a geometry
3) $D(P, Q)=D$ if and only if $P=Q$

- Examples: Euclidian metric, taxicab metric
- Euclidian metric: $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left\lvert\, \frac{\left|x_{2}-x_{1}\right|^{2}+\left|\left.\right|_{2}-y_{1}\right|^{2}}{}\right.}$
- Taxicab metric: $p\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|\underline{\left|x_{2}-x_{1}\right|}+\right| \underline{\left|y_{2}-y_{1}\right|}$

Coordinate function 3.2.13:

- Let l be a line. A one-to-one correspondence $f: l \rightarrow \mathbb{R}$ such that $P Q=\mid f(P)$ - $f(a) \mid$ for every P and Q on l is called a coordinate function for the line l, and the number $f(P)$ is called the coordinate of the point P.

- The ruler placement "postulate" (3.2 .16)

For every pair of distinct points P and Q, there is a coordinate function $f: \overleftrightarrow{P Q} \rightarrow \mathbb{R}$ such that $f(p)=0$ and $f(Q)>0$

- The point construction "postulate" (3.2.23)
- If A and B are distinct points and d is any nonnegative number, then there exists a unique point C such that C lies on $\overrightarrow{A B}$ and $A C=d$

Axioms for Neutral Geometry - NG4

- The Plane Separation Postulate (3.3.2)
- For every line l, the points that do not lie on l form two disjoint, nonempty sets H_{1} and H_{2}, called half-planes bounded by l, such that the following conditions are satisfied:
- Each of H_{1} and H_{2} is convex
- If $P \in H_{1}$ and $Q \in H_{2}$, then $\overline{P Q}$ intersects l.
- (Every line divides the plane into two convex sets, the halfplanes. A connection between two points, one in each halfplane, intersects the line).

- Definition: angle (3.3 .6)

- Definition: interior of an angle (3.3.7)
 interior of the $\Varangle C A B$
- Definition : Triangle (3.3.11)
$\triangle A B C=\overline{A B} \cup \overline{A C} \cup \overline{B C} \quad, A ; B, C$ noncollinear

- The ray theorem (3.3.9)
- Let l be a line, A a point on l, and B an external point for l. If C is on $\overrightarrow{A B}$ and $l \neq A$, then B and C are on the same side of l

- Pash's axiom (3.3.12)
- Let $\triangle A B C$ be a triangle and let l be a line such that none of A, B and C lies on l. If l intersects $\overline{A B}$, then l also intersects either $\overline{A C}$ or $\overline{B C}$

Axioms for Neutral Geometry - NG5

- The Protractor Postulate (3.4.1)
- For every angle $\angle B A C$ there is a real number $\mu(\angle B A C)$, called the measure of $\angle B A C$, such that the following conditions are satisfied:

1) $0^{\circ} \leq \mu(\angle B A C) \angle 180^{\circ}$ for every angle $\angle B A C$
2) $\mu(\angle B A C)=0^{\circ}$ if and only if $\overrightarrow{A B}=\overrightarrow{A C}$
3) Angle Construction Postulate: for each real number r, $0<r \angle 180$, and for each half-plane H bounded by $\overleftrightarrow{A B}$ there exists a unique ray $\overrightarrow{A E}$ such that E is in H and $\mu(\angle B A E)=r^{\circ}$
4) Angle Addition Postulate: If the ray $\overrightarrow{A D}$ is between the rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$ then $\mu(\angle B A D)+\mu(\angle D A C)=\mu(\angle B A C)$

(we can measure and construct angles $\left(\leq 0^{\circ}\right.$ and $\angle 180^{\circ}$) and add angles it they share a ray)

- Betweenness Theorem for Rays (3.4.5)
- Let A, B, C and D be four distinct points such that C and D lie on the same side of $\overleftrightarrow{A B}$. Then $\mu(\angle B A D)<\mu(\angle B A C)$ if and only if $\overrightarrow{A D}$ is between $\overrightarrow{A B}$ and $\overrightarrow{A C}$

- The z-theorem (3.5.1)
- Let l be a line and let A and D be distinct points on l if B and E are points on opposite sides of l, then $\overrightarrow{A B} \cap \overrightarrow{D E}=\varnothing$

- The crossbar theorem
- If $\triangle A B C$ is a triangle and D is a point in the interior of $\angle B A C$, then there is a point G such that G lies both on $\overrightarrow{A D}$ and $\overline{B C}$.

- The linear pair theorem
-If angles $\angle B A D$ and $\angle D A C$ form a linear pair, then $\mu(\angle B A D)+\mu(\angle D A C)=180^{\circ}$

- Definition: Congruence of triangles (3.6.1)

The triangles must be exactly the same. Sides of angles are the same size
$\triangle A B C \cong \triangle D E F$
congruence

Axioms for Neutral Geometry - NGC
The side-Angle-side postulate (3.6.3)

- If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\overline{A B} \cong \overline{D E}, \angle A B C \cong \angle D E F$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.
(Triangles are congruent if two sides and the angle between them are congruent)

- Isosceles Triangle Theorem (3.6.5)
- If $\triangle A B C$ is a triangle and $\overline{A B} \cong \overline{A C}$, then $\angle A B C \cong \angle A C B$.

Actually (which is proven in Chapter 42), the converse also holds:

- If $\triangle A B C$ is a triangle and $\angle A B C \cong \angle A C B$, then $\overline{A B} \cong \overline{A C}$ (4.2.2)

More about triangles

- Congruences

Based on the side-angle-side postulate (SAS), we can prove more congruences about triangles:
Two triangles are congruent if they have congruences for one of the following combinations

- angle-side-angle (ASA), 4.2.1 \qquad d
- angle-angle-side (AAS), 4.2.3
- Side-Side-side (sss), 4.2.7

- Note: Side-side-angle is in general not sufficient for congruence
- Exterior angle theorem (4.1.2)
-If $\triangle A B C$ is a triangle and D is a point such that $\overrightarrow{C D}$ is opposite to $\overrightarrow{C B}$, then $\mu(\angle D C A)>\mu(\angle B A C)$ and

$$
\mu(\angle D C A)>\mu(\angle A B C)
$$

- Consequence: triangles cannot have two right angles

- Theorem on existence and uniqueness of perpendiculars
- For every line l and for every point P, there exists a unique line m such that P lies on m and $m \perp l$
 \perp = perpendicular
- Theorem: Scalene Inequality (4.3.1)
- In any triangle, the greater side lies opposite the greater angle and the greater angle lees opposite the greater side

- Theorem: Triangle Inequality (4.3.2)
- If A, B and C are three noncollinear points, then $A C<A B+B C$

- Theorem: Distance of point and line (4.3.4)
- Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l. If R is any point on l that is different from F, then $P R>P F$

- Definition: distance from point to line (4.3.0)
- If l is a line and P is a point, then the distance from P to l, denoted $d(P, l)$, is defined to be the distance from P to the foot point of the perpendicular from P to l

- Theorem: Pointwise Characterization of Angle Bisector (4.3.6)
- Let A, B and C be three noncollinear points and let P be a point in the interior of $\angle B A C$ if and only if $d(P, \overleftrightarrow{A B})=d(P, \overleftrightarrow{A C})$

- Theorem: Pointwise Characterization of Perpendicular Bisector
- Let A and B be distinct points. A point P lies on the perpendicular bisector of $\overline{A B}$ if and only if $P A=P B$

- Definition: transversal, interior angle, alternate interior angle (4.4.1)

- Alternate Interior Angle Theorem
- If l and l^{\prime} are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then l is parallel to l^{\prime}

- Corresponding angles theorem (4.4.4)
- If l and l^{\prime} are two lines cut by a transversal t in such a way that two corresponding angles are congruent, then l is parallel to l^{\prime}.

- Corollary: Existence of Parallels (4.4.6)
- If l is a line and P is an external point, then there is a line m such that P lies on m and m is parallel to l_{0}
\qquad m
$l \| m$
\qquad
\Rightarrow Elliptic parallel postulate \downarrow

Continuing Neutral geometry, but not the axiom NG6...

- Saccheri-Legendre theorem (4.5.2)

If $\triangle A B C$ is any triangle, then $\sigma(\triangle A B C) \leq 180^{\circ}$
In other words \rightarrow Not always exactly 180° (can be smaller)

- Theorem 4.6.4

If $\triangle A B C D$ is a convex quadrilateral, then $\sigma(D A B C D) \leq 360^{\circ}$
same as the theorem concerning triangles

quadrilateral

not quadrilateral

- Euclid's postulate V
- If l and l^{\prime} are two lines cut by a transversal t in such a way that the sum of the measures of the two interior angles on one side of t is less than 180°, then l and l^{\prime} intersect on that side of t.

The following are equivalent:

- The Euclidian Parallel Postulate
- Euclid's postulate V (proof of equivalence: 4.7.2)
- The converse of the alternate interior angle theorem (4.7.2)

- If two parallel lines are cut by a transversal, both pairs of alternate interior angles are congruent
- Angle sum postulates
- $\sigma(\triangle A B C)=180^{\circ}$ for all triangles $\triangle A B C$
- 4.8 .4
- Part 1: $\sigma(\triangle A B C)=180^{\circ}$ for one triangles $\triangle A B C$
- Part 3: There exists a rectangle $\triangle A B C D$
- Proclus' Axiom (4.7.3 , part 1)

- If l and l^{\prime} are parallel lines and $t \neq l$ is a line such that $t \cap l \neq \phi$, then $t \cap l^{\prime} \neq \phi$
- Transitivity of parallelism (4.7.3, part 4)

- If l is parallel to m and m is parallel to n, then either $l=n$ or $l n$
- Every triangle can be circumscribed 18.2.3)

- Defect of triangles and quadrilateral $(4.8,1)$
- Defect of $\triangle A B C: \delta(\triangle A B C)=180^{\circ}-\sigma(\triangle A B C)$

By the Saccheri-Legendre Theorem, the defect af every triangle is nonnegative.

- Defect of a convex quadrilateral $\triangle A B C D: \delta(D A B C D)=360^{\circ}-\sigma(\square A B C D)$
- Saccheri quadrilateral (4.8.8)
- A quadrilateral $\triangle A B C D$ such that $\angle A B C$ and $\angle D A B$ are right angles and $\overline{A D} \cong \overline{B C}$

Properties

1. $\overline{A C} \cong \overline{B D}$

2. $\angle B C D \cong \angle A D C$
3. If $A E=E B$ and $D F=F C$ then $\overleftrightarrow{E F} \perp \overleftrightarrow{A B}$ and $\overleftrightarrow{E F} \perp \overleftrightarrow{O C}$
4. $\square A B C D$ is a parallelogram
5. $\triangle A B C D$ is convex
b. $\angle B C D$ and $\angle A D C$ are right or acute angles

- Lambert quadrilateral
- A quadrilateral in which three of the angles are right angles

Properties

1. $\square A B C D$ is a parallelogram
2. $\triangle A B C D$ is convex
3. $\angle A D C$ is either right or acute angles
4. $B C \leq A D$.

- Tire universal Hyperbolic. Theorem
- If there exists one line l_{0}, an external point P_{0}, and at least two lines that pass through P_{0} and are parallel to l_{0}, then for every line l and for every external point P there exist at least two lines that pass through P and are parallel to l.

- Corollary (4.9.2): The hyperbolic parallel postulate is equivalent to the negation of the Euclidian Parallel Postulate
- Corollary (4.9.3): In any model of neutral geometry, either the Euclidian parallel postulate or the hyperbolic parallel postulate will hold

Circles in Neutral Geometry

- Inscribed Circle Theorem (8.2.8)
- Every triangle has a unique inscribed circle

Euclidian Geometry

- Euclidian Parallel Postulate is assumed as the 7 th Axiom (together with gre b axioms from neutral geometry) \qquad
\qquad
l
- Parallel projection Theorem (5.2.1)

$$
\begin{aligned}
& A * B * C \\
& \frac{A B}{A C}=\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}}
\end{aligned}
$$

- Fundamental Theorem on Similar Triangles (5.3.1)
- If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\triangle A B C \sim \triangle D E F$, then $\frac{A B}{A C}=\frac{D E}{D F}$.

- Corollary (5.3.2): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\triangle A B C \sim \triangle D E F$, then there is a positive number r such that $D E=r \cdot A B, D F=r \cdot A C$, and $E F=r \cdot B C$.
- SAS Similarity Criterion (5.3 .3)
- If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle C A B \cong \angle F D E$ and $\frac{A B}{A C}=\frac{D E}{D F}$, then $\triangle A B C \sim \triangle D E F$

- Converse to Similar Triangles Theorem (5.3.4)
- $\triangle A B C$ and $\triangle D E F$ with $\underbrace{\frac{A B}{D E}}_{r}=\underbrace{\frac{A C}{D F}}_{r}=\underbrace{\frac{B C}{E F}}_{r} \Rightarrow \triangle A B C \sim \triangle D E F$

Pythagorean Theorem $(5.4 .1)$

- Converse to the pythagorean theorem (5.4.5)

- Theorem on height of triangle (S.4.3)

$$
h=\sqrt{x \cdot y}
$$

Law of sines and cosines $(5.5 .3,5.5 .4)$

- Pythagorean Identity: θ any angle

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

- Law of sines:

$$
-\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

- Law of cosines:

$$
-c^{2}=a^{2}+b^{2}-2 \cdot a \cdot b \cdot \cos C
$$

Morleys Theorem (Excursus)

- The point of intersection of the adjacent angle trisectors of the angles of any triangle $\triangle A B C$ are the polygon vertices of an equilateral triangle $\triangle D E F$ known as the Morley triangle

Definition of points:

- Centroid: point where the three medians of the triangle meet (A median of a triangle is a line segment from one vertex to the midpoint on the opposite side of the triangle)
- Orthocenter: The intersection of the three alditudes of a triangle
- Circumcenter: the point where all the perpendicular bisectors of the
 triangle's sides meet

Euler line and Nine-point circle

- Euler line: The line on which the centroid, the orthocenter and the circumcenter of a triangle lie
- Nine-point circle: Circle that can be constructed for any given triangle. The following nine points all lie on the circle:
- The midpoint of each sidle of the triangle (3 punks)
- The foot of each altitude (3 pant)
- The midpoint of the line segment from each vertex of the triangle to the orthocenter (3 pant)

Theorems on circles in Euclidian Geometry

- Theorem (8.3.1 and 8.3.3 together)

Let $\triangle A B C$ be a triangle and let M be the midpoint of $\overline{A B}$. If and only if $A M=M C$, then $\angle A C B$ is a right angle

- Corollary (8.3.2)

If the vertices of a triangle $\triangle A B C$ lie on a circle and $\overline{A B}$ is a diameter of that circle, then $\angle A C B$ is a right angle "Thales circle"

Definitions (8.3.7 \& 8.3.8)

- Inscribed angle $\angle P Q R$
- central angle $\angle P O R$
- corresponding angle central angle $=\frac{\text { inscribed angle }}{2}$

Central angle theorem (8.3.9)

- The measure of an inscribed angle for a circle is one half the measure of the corresponding central angle

Inscribed angle theorem (8.3.10)
of two inscribed angles intercept the same arc, then the angles are congruent

$\angle P Q R \cong \angle P Q R$ if they share the same interior bow (marred in orange)
same interior bow

HYPERBOLIC GEOMETRY (HG.)

- Hyperbolic Parallel Postulate is assumed as the Fth Axiom (together with the b axioms from Neutral Geometry)

- Angle sum and defect in H.G.
- Theorem (b.1.1): For every triangle $\triangle A B C, \sigma(\triangle A B C)<180^{\circ}$
- Corollary (6.1.2): For every triangle $\triangle A B C, 0^{\circ}<\delta(\triangle A B C)<180^{\circ}$
- Theorem (6.1.3): For every convex quadrilateral $\triangle A B C D, \sigma(\square A B C D)<360^{\circ}$

Properties of quadrilaterals in H.G.

- Corollary (6.1.4): The summit angles in Saccheri quadrilaterals are acute

- Corollary (6.1. $)$: The fourth angle in a Lambert quadrilateral is acute

- Theorem (6.1.6): There does not exist a rectangle
- Theorem (6.1.7): In a Lambert quadrilateral, the length of a side between two right angles is strictly less than the length of the opposite side.

AAA congruence criterium (6.1.11)

- If $\triangle A B C$ is similar to $\triangle D E F$, then $\triangle A B C$ is congruent to $\triangle D E F$

Parallel lines in H.G

- Theorem (6.2.1)
- If l is a line, P is an external, and m is a line such that P lies on m, then there exists at most one point Q such that $P \neq Q, Q$ lies on m_{1} and $d(Q, l)=d(P, l)$

Theorem (6.2.3):

- If l and m are parallel lines and there exist two points on m that are equidistant from l, then l and m admit a common perpendicular

Theorem (6.2.4):

- If lines l and m admit a common perpendicular, then that common perpendicular is unique.

Circumscribed triangle

- Theorem (8.2.6):

If the Euclidian Parallel Postulates fails, then there exists a triangle that cannot be circumscribed

Also repeat for the exam:

- The cartesian model for Euchoiian Geometry (lecture 26, chapter 11.1)
- The Poincare disk model (lecture 27, chapter 11.2)

